Learn R Programming

glmnet (version 3.0-2)

Cindex: compute C index for a Cox model

Description

Computes Harrel's C index for predictions from a "coxnet" object.

Usage

Cindex(pred, y, weights = rep(1, nrow(y)))

Arguments

pred

Predictions from a "coxnet" object

y

a survival response object - a matrix with two columns "time" and "status"; see documentation for "glmnet"

weights

optional observation weights

Details

Computes the concordance index, taking into account censoring.

References

Harrel Jr, F. E. and Lee, K. L. and Mark, D. B. (1996) Tutorial in biostatistics: multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing error, Statistics in Medicine, 15, pages 361--387.

See Also

cv.glmnet

Examples

Run this code
# NOT RUN {
set.seed(10101)
N = 1000
p = 30
nzc = p/3
x = matrix(rnorm(N * p), N, p)
beta = rnorm(nzc)
fx = x[, seq(nzc)] %*% beta/3
hx = exp(fx)
ty = rexp(N, hx)
tcens = rbinom(n = N, prob = 0.3, size = 1)  # censoring indicator
y = cbind(time = ty, status = 1 - tcens)  # y=Surv(ty,1-tcens) with library(survival)
fit = glmnet(x, y, family = "cox")
pred = predict(fit, newx = x)
Cindex(pred, y)
cv.glmnet(x, y, family = "cox", type.measure = "C")

# }

Run the code above in your browser using DataLab