Learn R Programming

glmnet (version 3.0-2)

print.cv.glmnet: print a cross-validated glmnet object

Description

Print a summary of the results of cross-validation for a glmnet model.

Usage

# S3 method for cv.glmnet
print(x, digits = max(3, getOption("digits") - 3),
  ...)

Arguments

x

fitted 'cv.glmnet' object

digits

significant digits in printout

additional print arguments

Details

A summary of the cross-validated fit is produced, slightly different for a 'cv.relaxed' object than for a 'cv.glmnet' object. Note that a 'cv.relaxed' object inherits from class 'cv.glmnet', so by directly invoking print.cv.glmnet(object) will print the summary as if relax=TRUE had not been used.

References

Friedman, J., Hastie, T. and Tibshirani, R. (2008) Regularization Paths for Generalized Linear Models via Coordinate Descent https://arxiv.org/abs/1707.08692 Hastie, T., Tibshirani, Robert, Tibshirani, Ryan (2019) Extended Comparisons of Best Subset Selection, Forward Stepwise Selection, and the Lasso

See Also

glmnet, predict and coef methods.

Examples

Run this code
# NOT RUN {
x = matrix(rnorm(100 * 20), 100, 20)
y = rnorm(100)
fit1 = cv.glmnet(x, y)
print(fit1)
fit1r = cv.glmnet(x, y, relax = TRUE)
print(fit1r)
## print.cv.glmnet(fit1r)  ## CHECK WITH TREVOR
# }

Run the code above in your browser using DataLab