Learn R Programming

gmodels (version 2.13.0)

estimable: Contrasts and estimable linear functions of model coefficients

Description

Compute and test contrasts and other estimable linear functions of model coefficients for for lm, glm, lme, lmer, and geese objects

Usage

estimable(obj, cm, beta0, conf.int=NULL, joint.test=FALSE, show.beta0)
## S3 method for class 'lmer':
estimable(obj, cm, beta0, conf.int = NULL, show.beta0, sim.lmer = TRUE, n.sim = 1000)

Arguments

obj
Regression (lm,glm,lme,lmer) object.
cm
Vector, List, or Matrix specifying estimable linear functions or contrasts. See below for details.
beta0
Vector of null hypothesis values
conf.int
Confidence level. If provided, confidence intervals will be computed.
joint.test
Logical value. If TRUE a 'joint' Wald test for the hypothesis $L \beta=\beta_0$ is performed. Otherwise 'row-wise' tests are performed, i.e. $(L \beta)_i=\beta_{0i}$
show.beta0
Logical value. If TRUE a column for beta0 will be included in the output table. Defaults to TRUE when beta0 is specified, FALSE otherwise.
sim.lmer
Logical value. If TRUE p-values and confidence intervals will be estimated using [Matrix]{mcmcsamp}. n.sim{Number of MCMC samples to take in [Matrix]{mcmcsamp}.}
estimab