Learn R Programming

gmodels (version 2.18.1)

ci: Compute Confidence Intervals

Description

Compute and display confidence intervals for model estimates. Methods are provided for the mean of a numeric vector ci.default, the probability of a binomial vector ci.binom, and for lm, lme, and mer objects are provided.

Usage

ci(x, confidence=0.95, alpha=1 - confidence, ...)
  # S3 method for numeric
ci(x, confidence=0.95, alpha=1-confidence, na.rm=FALSE, ...)
  # S3 method for binom
ci(x, confidence=0.95, alpha=1-confidence, ...)
  # S3 method for lm
ci(x, confidence=0.95, alpha=1-confidence, ...)
  # S3 method for lme
ci(x, confidence=0.95, alpha=1-confidence, ...)

  # S3 method for estimable
ci(x, confidence=0.95, alpha=1-confidence, ...)
  # S3 method for fit_contrast
ci(x, confidence=0.95, alpha=1-confidence, ...)

Arguments

x

object from which to compute confidence intervals.

confidence

confidence level. Defaults to 0.95.

alpha

type one error rate. Defaults to 1.0-confidence

na.rm

boolean indicating whether missing values should be removed. Defaults to FALSE.

Arguments for methods

Value

vector or matrix with one row per model parameter and elements/columns Estimate, CI lower, CI upper, Std. Error, DF (for lme objects only), and p-value.

See Also

confint, lm, summary.lm

Examples

Run this code
# NOT RUN {
# mean and confidence interval
ci( rnorm(10) )

# binomial proportion and exact confidence interval
b <- rbinom( prob=0.75, size=1, n=20 )
ci.binom(b) # direct call
class(b) <- 'binom'
ci(b)       # indirect call

# confidence intervals for regression parameteres
data(state)
reg  <-  lm(Area ~ Population, data=as.data.frame(state.x77))
ci(reg)

# }
# NOT RUN {
<!-- %\dontrun{ -->
# }
# NOT RUN {
<!-- %# mer example -->
# }
# NOT RUN {
<!-- %library(lme4) -->
# }
# NOT RUN {
<!-- %fm2 <- lmer(Reaction ~ Days + (1|Subject) + (0+Days|Subject), sleepstudy) -->
# }
# NOT RUN {
<!-- %ci(fm2) -->
# }
# NOT RUN {
<!-- %} -->
# }
# NOT RUN {

# }

Run the code above in your browser using DataLab