Learn R Programming

gmum.r (version 0.2.1)

OptimizedGNG: Constructor of Optimized GrowingNeuralGas object.

Description

Construct simplified and optimized GNG object. Can be used to train offline, or online. Data dimensionality shouldn't be too big, if it is consider using dimensionality reduction techniques.

Usage

OptimizedGNG(x = NULL, labels = c(), beta = 0.99, alpha = 0.5, max.nodes = 1000, eps.n = 6e-04, eps.w = 0.05, max.edge.age = 200, train.online = FALSE, max.iter = 200, dim = 0, min.improvement = 0.001, lambda = 200, verbosity = 0, seed = -1, value.range = c(0, 1))

Arguments

x
Passed data (matrix of data.frame) for offline training
labels
Every example can be associated with labels that are added to nodes later. By default empty
beta
Decrease the error variables of all node nodes by this fraction (forgetting rate). Default 0.99
alpha
Decrease the error variables of the nodes neighboring to the newly inserted node by this fraction. Default 0.5
max.nodes
Maximum number of nodes (after reaching this size it will continue running, but new noes won't be added)
eps.n
Strength of adaptation of neighbour node. Default 0.0006
eps.w
Strength of adaptation of winning node. Default 0.05
max.edge.age
Maximum edge age. Decrease to increase speed of change of graph topology. Default 200
train.online
If used will run in online fashion. Default FALSE
max.iter
If training offline will stop if exceedes max.iter iterations. Default 200
dim
Used for training online, specifies dataset example dimensionality
min.improvement
Used for offline (default) training. Controls stopping criterion, decrease if training stops too early. Default 1e-3
lambda
New vertex is added every lambda iterations. Default 200
verbosity
How verbose should the process be, as integer from $[0,6]$, default: 0
seed
Seed for internal randomization
value.range
All example features should be in this range, required for optimized version of the algorithm. Default (0,1)

Examples

Run this code
## Not run: 
# # Train online optimizedGNG. All values in this dataset are in the range (-4.3, 4.3)
# X <- gng.preset.sphere(100)
# gng <- OptimizedGNG(train.online = TRUE, value.range=c(min(X), max(X)), dim=3, max.nodes=20)
# insertExamples(gng, X)
# run(gng)
# Sys.sleep(10)
# pause(gng)
# ## End(Not run)

Run the code above in your browser using DataLab