Learn R Programming

gmwm (version 2.0.0)

gen.gts: Create a GMWM TS Object based on model

Description

Create a gts object based on a supplied time series model.

Usage

gen.gts(model, N = 1000, start = 0, end = NULL, freq = 1, unit = NULL, name = NULL)

Arguments

model
A ts.model or gmwm object containing one of the allowed models.
N
An interger containing the amount of observations for the time series.
start
A numeric that provides the time of the first observation.
end
A numeric that provides the time of the last observation.
freq
A numeric that provides the rate of samples. Default value is 1.
unit
A string that contains the unit expression of the frequency. Default value is NULL.
name
A string that provides an identifier to the data. Default value is NULL.

Value

A gts object with the following attributes:
start
The time of the first observation
end
The time of the last observation
freq
Numeric representation of frequency
unit
String representation of the unit
name
Name of the dataset

Details

This function accepts either a ts.model object (e.g. AR1(phi = .3, sigma2 =1) + WN(sigma2 = 1)) or a gmwm object.

Examples

Run this code
# Set seed for reproducibility
set.seed(1336)

n = 1000

# AR1 + WN
model = AR1(phi = .5, sigma2 = .1) + WN(sigma2=1)
x = gen.gts(model, n)
x
plot(x)

set.seed(1336)
# GM + WN
# Convert from AR1 to GM values
m = ar1_to_gm(c(.5,.1),10)
# Beta = 6.9314718, Sigma2_gm = 0.1333333
model = GM(beta = m[1], sigma2_gm = m[2]) + WN(sigma2=1)
x2 = gen.gts(model, n, freq = 10, unit = 'sec')
x2

plot(x2, to.unit = 'min')

# Same time series
all.equal(x, x2, check.attributes = FALSE)

Run the code above in your browser using DataLab