Learn R Programming

gmwm (version 2.0.0)

gmwm.imu: GMWM for (Robust) Sensor

Description

GMM object

Usage

gmwm.imu(model, data, compute.v = "fast", robust = F, eff = 0.6, ...)

Arguments

model
A ts.model object containing one of the allowed models.
data
A matrix or data.frame object with only column (e.g. $ N x 1 $), or a lts object, or a gts object.
compute.v
A string indicating the type of covariance matrix solver. "fast", "bootstrap", "asymp.diag", "asymp.comp", "fft"
robust
A boolean indicating whether to use the robust computation (TRUE) or not (FALSE).
eff
A double between 0 and 1 that indicates the efficiency.
...
Other arguments passed to the main gmwm function

Value

A gmwm object with the structure:
estimate
Estimated Parameters Values from the GMWM Procedure
init.guess
Initial Starting Values given to the Optimization Algorithm
wv.empir
The data's empirical wavelet variance
ci.low
Lower Confidence Interval
ci.high
Upper Confidence Interval
orgV
Original V matrix
V
Updated V matrix (if bootstrapped)
omega
The V matrix inversed
obj.fun
Value of the objective function at Estimated Parameter Values
theo
Summed Theoretical Wavelet Variance
decomp.theo
Decomposed Theoretical Wavelet Variance by Process
scales
Scales of the GMWM Object
robust
Indicates if parameter estimation was done under robust or classical
eff
Level of efficiency of robust estimation
model.type
Models being guessed
compute.v
Type of V matrix computation
augmented
Indicates moments have been augmented
alpha
Alpha level used to generate confidence intervals
expect.diff
Mean of the First Difference of the Signal
N
Length of the Signal
G
Number of Guesses Performed
H
Number of Bootstrap replications
K
Number of V matrix bootstraps
model
ts.model supplied to gmwm
model.hat
A new value of ts.model object supplied to gmwm
starting
Indicates whether the procedure used the initial guessing approach
seed
Randomization seed used to generate the guessing values
freq
Frequency of data

Details

This version of the gmwm function has customized settings ideal for modeling with an IMU object. If you seek to model with an Gauss Markov, GM, object. Please note results depend on the freq specified in the data construction step within the imu. If you wish for results to be stable but lose the ability to interpret with respect to freq, then use AR1 terms.

Examples

Run this code
## Not run: 
# # Example data generation
# data = gen.gts(GM(beta=0.25,sigma2_gm=1),10000, freq = 5)
# results = gmwm.imu(GM(),data)
# inference = summary(results)
# 
# # Example with IMU Data
# 
# 
# 
# ## End(Not run)

Run the code above in your browser using DataLab