Learn R Programming

gmwm (version 2.0.0)

wvcov: Calculate the Asymptotic Covariance Matrix

Description

Places the Asymptotic Covariance Matrix in print form.

Usage

wvcov(signal.modwt, signal.wvar, compute.v = "diag")

Arguments

signal.modwt
A modwt object that contains the modwt decomposition.
signal.wvar
A wvar object that contains the wavelet variance.
compute.v
A string that indicates the type of covariance matrix to compute. Supports: "diag"

Value

A list with the structure:
"V"
Covariance Matrix
"V.r"
Covariance Matrix
"nlevels"
Level of decomposition J
"compute.v"
Type of Covariance Matrix
"robust"
Robust active
"eff"
Efficiency level for Robust
"scales"
Tau scales (2^(1:J))
"wv.empir"
Empirical Wavelet Variance

Examples

Run this code
set.seed(999)
x = rnorm(100)
decomp = modwt(x)
wv = wvar(x)
out = wvcov(decomp, wv, compute.v="diag")

# Robust
decomp = modwt(x)
wv = wvar(x, robust = TRUE)
out = wvcov(decomp, wv, compute.v="diag")

Run the code above in your browser using DataLab