Learn R Programming

gnmf (version 0.7.1)

gnmf: Generalized non-negative matrix factorization based on Renyi Divergence

Description

Performs generalized non-negative matrix factorization based on Renyi Divergence

Usage

gnmf(V, scheme, nsteps = 2000, repeats = 20, ranks = 2, cltarget = "PATTERN", clscheme = "Binary", reffile = "", scaling = "F", normalizing = "F", alphas = 1, runtype = "simulation", cstepsize = 20, idealization = 1)

Arguments

V
Input data matrix
scheme
KL, Renyi, or ED
nsteps
Update steps, default 2000
repeats
Repeats, default 20
ranks
The number of components into which matrix V is to be factored, default 2 (a scalar)
cltarget
Clustering target, default 'PATTERN' (H matrix) either PATTERN or ALTERNATE
clscheme
Clustering scheme, default 'Binary', could be 'PearsonHC'
reffile
Default none
scaling
Boolean, default F
normalizing
Boolean, H matrix normalization, default 'F'
alphas
Renyi parameter, default 1.0 (a scalar), ignored if scheme is not Renyi
runtype
simulation (default) or evaluation or whole
cstepsize
Convergence test step size, default 20
idealization
Default 1

Value

H
List of pattern matrices, one for each repetition
W
List of amplitude matrices, one for each repetition

References

Devarajan K. Nonnegative matrix factorization: an analytical and interpretive tool in computational biology. PLoS Comput Biol. 2008 Jul 25;4(7):e1000029.

Devarajan, K., Wang, G., Ebrahimi, N. (2011). A unified approach to nonnegative matrix factorization and probabilistic latent semantic indexing, (July 2011). Cobra Preprint Series. Working Paper 80. http://biostats.bepress.com/COBRA/Art80.

http://devarajan.fccc.edu

Examples

Run this code
# Load sample data.
data(V)

# Compute NMF with 20 repeats.
result <- gnmf(V,scheme="KL")

# Extract H and W from the result.
# H and W are lists, each containing the result of 20 repeats.
H <- result$H
W <- result$W

# Get the H and W matrices of the first repeat.
H1 <- H[[1]]
W1 <- W[[1]]

Run the code above in your browser using DataLab