## Calculate DCA
library(vegan)
scheden.dca <- decorana(schedenveg)
## Select the 30% most abundant species and call the result
limited <- ordiselect(schedenveg, scheden.dca, ablim = 0.3)
limited
# Use the result in plotting
plot(scheden.dca, display="n")
points(scheden.dca, display="sites")
points(scheden.dca, display="species",
select = limited, pch = 3, col = "red", cex = 0.7)
ordipointlabel(scheden.dca, display="species",
select = limited, col="red", cex = 0.7, add = TRUE)
## Select the 70% of the species with the best fit to the axes (highest species scores)
## AND belonging to the 30% most frequent species
limited <- ordiselect(schedenveg, scheden.dca, ablim = 0.3,
fitlim = 0.7, freq = TRUE)
## Select the 30% least frequent species and call the result
limited <- ordiselect(schedenveg, scheden.dca, ablim = -0.3, freq = TRUE)
limited
## Select the 20% of species with the best fit to community assignment
## AND belonging to the 50% most abundant
## in NDMS for axes 1 & 3
nmds <- metaMDS(schedenveg, k = 3) # run NMDS
env13 <- envfit(nmds, schedenenv, choices = c(1, 3))
limited13 <- ordiselect(schedenveg, nmds, method = "factors",
fitlim = 0.1, ablim = 1,
choices = c(1,3), env = env13)
# Use the result in plotting
plot(nmds, display="sites", choices = c(1, 3))
plot(env13, p.max = 0.05)
points(nmds, display="species", choices = c(1,3),
select = limited13, pch = 3, col="red", cex=0.7)
ordipointlabel(nmds, display="species", choices = c(1,3),
select = limited13, col="red", cex=0.7, add = TRUE)
Run the code above in your browser using DataLab