if (FALSE) {
library(googleAnalyticsR)
## Authenticate in Google OAuth2
## this also sets options
ga_auth()
## if you need to re-authenticate use ga_auth(new_user=TRUE)
## if you have your own Google Dev console project keys,
## then don't run ga_auth() as that will set to the defaults.
## instead put your options here, and run googleAuthR::gar_auth()
## get account info, including View Ids
account_list <- ga_account_list()
ga_id <- account_list$viewId[1]
## get a list of what metrics and dimensions you can use
meta <- ga_meta()
head(meta)
## pick the account_list$viewId you want to see data for.
## metrics and dimensions can have or have not "ga:" prefix
gadata <- google_analytics_3(id = ga_id,
start="2015-08-01", end="2015-08-02",
metrics = c("sessions", "bounceRate"),
dimensions = c("source", "medium"))
## if more than 10000 rows in results, auto batching
## example is setting lots of dimensions to try and create big sampled data
batch_gadata <- google_analytics_3(id = ga_id,
start="2014-08-01", end="2015-08-02",
metrics = c("sessions", "bounceRate"),
dimensions = c("source", "medium",
"landingPagePath",
"hour","minute"),
max=99999999)
## mitigate sampling by setting samplingLevel="WALK"
## this will send lots and lots of calls to the Google API limits, beware
walk_gadata <- google_analytics_3(id = ga_id,
start="2014-08-01", end="2015-08-02",
metrics = c("sessions", "bounceRate"),
dimensions = c("source", "medium", "landingPagePath"),
max=99999999, samplingLevel="WALK")
## multi-channel funnels set type="mcf"
mcf_gadata <- google_analytics_3(id = ga_id,
start="2015-08-01", end="2015-08-02",
metrics = c("totalConversions"),
dimensions = c("sourcePath"),
type="mcf")
## reach meta-data via attr()
attr(gadata, "profileInfo")
attr(gadata, "dateRange")
}
Run the code above in your browser using DataLab