# NOT RUN {
# Create an Example Data Frame Containing Car x Color data
carnames <- c("bmw","renault","mercedes","seat")
carcolors <- c("red","white","silver","green")
datavals <- round(rnorm(16, mean=100, sd=60),1)
data <- data.frame(Car=rep(carnames,4),
Color=rep(carcolors, c(4,4,4,4) ),
Value=datavals )
# show the data
data
# generate balloon plot with default scaling
balloonplot( data$Car, data$Color, data$Value)
# show margin label rotation & space expansion, using some long labels
levels(data$Car) <- c("BMW: High End, German","Renault: Medium End, French",
"Mercedes: High End, German", "Seat: Imaginary, Unknown Producer")
# generate balloon plot with default scaling
balloonplot( data$Car, data$Color, data$Value, colmar=3, colsrt=90)
# Create an example using table
xnames <- sample( letters[1:3], 50, replace=2)
ynames <- sample( 1:5, 50, replace=2)
tab <- table(xnames, ynames)
balloonplot(tab)
# Example of multiple classification variabls using the Titanic data
library(datasets)
data(Titanic)
dframe <- as.data.frame(Titanic) # convert to 1 entry per row format
attach(dframe)
balloonplot(x=Class, y=list(Survived, Age, Sex), z=Freq, sort=TRUE)
# colorize: surviors lightblue, non-survivors: grey
Colors <- Titanic
Colors[,,,"Yes"] <- "skyblue"
Colors[,,,"No"] <- "grey"
colors <- as.character(as.data.frame(Colors)$Freq)
balloonplot(x=list(Age,Sex),
y=list(Class=Class,
Survived=gdata::reorder.factor(Survived,new.order=c(2,1))
),
z=Freq,
zlab="Number of Passengers",
sort=TRUE,
dotcol = colors,
show.zeros=TRUE,
show.margins=TRUE)
# }
Run the code above in your browser using DataLab