Learn R Programming

gplots (version 3.0.3)

ci2d: Create 2-dimensional empirical confidence regions

Description

Create 2-dimensional empirical confidence regions from provided data.

Usage

ci2d(x, y = NULL,
     nbins=51, method=c("bkde2D","hist2d"),
     bandwidth, factor=1.0,
     ci.levels=c(0.50,0.75,0.90,0.95,0.975),
     show=c("filled.contour","contour","image","none"),
     col=topo.colors(length(breaks)-1),
     show.points=FALSE,
     pch=par("pch"),
     points.col="red",
     xlab, ylab, 
     ...)
# S3 method for ci2d
print(x, ...)

Arguments

x

either a vector containing the x coordinates or a matrix with 2 columns.

y

a vector contianing the y coordinates, not required if `x' is matrix

nbins

number of bins in each dimension. May be a scalar or a 2 element vector. Defaults to 51.

method

One of "bkde2D" (for KernSmooth::bdke2d) or "hist2d" (for gplots::hist2d) specifyting the name of the method to create the 2-d density summarizing the data. Defaults to "bkde2D".

bandwidth

Bandwidth to use for KernSmooth::bkde2D. See below for default value.

factor

Numeric scaling factor for bandwidth. Useful for exploring effect of changing the bandwidth. Defaults to 1.0.

ci.levels

Confidence level(s) to use for plotting data. Defaults to c(0.5, 0.75, 0.9, 0.95, 0.975)

show

Plot type to be displaed. One of "filled.contour", "contour", "image", or "none". Defaults to "filled.contour".

show.points

Boolean indicating whether original data values should be plotted. Defaults to TRUE.

pch

Point type for plots. See points for details.

points.col

Point color for plotting original data. Defaiults to "red".

col

Colors to use for plots.

xlab, ylab

Axis labels

Additional arguments passed to KernSmooth::bkde2D or gplots::hist2d.

Value

A ci2d object consisting of a list containing (at least) the following elements:

nobs

number of original data points

x

x position of each density estimate bin

y

y position of each density estimate bin

density

Matrix containing the probability density of each bin (count in bin/total count)

cumDensity

Matrix where each element contains the cumulative probability density of all elements with the same density (used to create the confidence region plots)

contours

List of contours of each confidence region.

call

Call used to create this object

Details

This function utilizes either KernSmooth::bkde2D or gplots::hist2d to estmate a 2-dimensional density of the data passed as an argument. This density is then used to create and (optionally) display confidence regions.

When bandwidth is ommited and method="bkde2d", KernSmooth::dpik is appled in x and y dimensions to select the bandwidth.

See Also

bkde2D, conf2d, dpik, hist2d

Examples

Run this code
# NOT RUN {
   ####
   ## Basic usage 
   ####
   data(geyser, package="MASS")

   x <- geyser$duration
   y <- geyser$waiting

   # 2-d confidence intervals based on binned kernel density estimate
   ci2d(x,y)                   # filled contour plot
   ci2d(x,y, show.points=TRUE) # show original data


   # image plot
   ci2d(x,y, show="image")
   ci2d(x,y, show="image", show.points=TRUE)

   # contour plot
   ci2d(x,y, show="contour", col="black")
   ci2d(x,y, show="contour", col="black", show.points=TRUE)

   ####
   ## Control Axis scales
   ####
   x <- rnorm(2000, sd=4)
   y <- rnorm(2000, sd=1)

   # 2-d confidence intervals based on binned kernel density estimate
   ci2d(x,y)

   # 2-d confidence intervals based on 2d histogram
   ci2d(x,y, method="hist2d", nbins=25)
 
   # Require same scale for each axis, this looks oval
   ci2d(x,y, range.x=list(c(-20,20), c(-20,20)))
   ci2d(x,y, method="hist2d", same.scale=TRUE, nbins=25) # hist2d 

   ####
   ## Control smoothing and binning 
   ####
   x <- rnorm(2000, sd=4)
   y <- rnorm(2000, mean=x, sd=2)

   # Default 2-d confidence intervals based on binned kernel density estimate
   ci2d(x,y)

   # change the smoother bandwidth
   ci2d(x,y,
        bandwidth=c(sd(x)/8, sd(y)/8)
       )

   # change the smoother number of bins
   ci2d(x,y, nbins=10)
   ci2d(x,y)
   ci2d(x,y, nbins=100)

   # Default 2-d confidence intervals based on 2d histogram
   ci2d(x,y, method="hist2d", show.points=TRUE)

   # change the number of histogram bins
   ci2d(x,y, nbin=10, method="hist2d", show.points=TRUE )
   ci2d(x,y, nbin=25, method="hist2d", show.points=TRUE )

   ####
   ## Perform plotting manually
   ####
   data(geyser, package="MASS")

   # let ci2d handle plotting contours...
   ci2d(geyser$duration, geyser$waiting, show="contour", col="black")

   # call contour() directly, show the 90 percent CI, and the mean point 
   est <- ci2d(geyser$duration, geyser$waiting, show="none")
   contour(est$x, est$y, est$cumDensity,
           xlab="duration", ylab="waiting",
           levels=0.90, lwd=4, lty=2)
   points(mean(geyser$duration), mean(geyser$waiting),
         col="red", pch="X")


   ####
   ## Extract confidence region values
   ###
   data(geyser, package="MASS")

   ## Empirical 90 percent confidence limits
   quantile( geyser$duration, c(0.05, 0.95) )
   quantile( geyser$waiting, c(0.05, 0.95) )

   ## Bivariate 90 percent confidence region
   est <- ci2d(geyser$duration, geyser$waiting, show="none")
   names(est$contours) ## show available contours

   ci.90 <- est$contours[names(est$contours)=="0.9"]  # get region(s)
   ci.90 <- rbind(ci.90[[1]],NA, ci.90[[2]], NA, ci.90[[3]]) # join them

   print(ci.90)                  # show full contour
   range(ci.90$x, na.rm=TRUE)    # range for duration
   range(ci.90$y, na.rm=TRUE)    # range for waiting

   ####
   ## Visually compare confidence regions 
   ####
   data(geyser, package="MASS")

   ## Bivariate smoothed 90 percent confidence region
   est <- ci2d(geyser$duration, geyser$waiting, show="none")
   names(est$contours) ## show available contours

   ci.90 <- est$contours[names(est$contours)=="0.9"]  # get region(s)
   ci.90 <- rbind(ci.90[[1]],NA, ci.90[[2]], NA, ci.90[[3]]) # join them

   plot( waiting ~ duration, data=geyser,
         main="Comparison of 90 percent confidence regions" )
   polygon( ci.90, col="green", border="green", density=10)

   ## Univariate Normal-Theory 90 percent confidence region
   mean.x <- mean(geyser$duration)
   mean.y <- mean(geyser$waiting)
   sd.x <- sd(geyser$duration)
   sd.y <- sd(geyser$waiting)

   t.value <- qt(c(0.05,0.95), df=gdata::nobs(geyser$duration), lower=TRUE)
   ci.x <- mean.x +  t.value* sd.x
   ci.y <- mean.y +  t.value* sd.y

   plotCI(mean.x, mean.y,
          li=ci.x[1],
          ui=ci.x[2],
          barcol="blue", col="blue",
          err="x",
          pch="X",
          add=TRUE )

   plotCI(mean.x, mean.y,
          li=ci.y[1],
          ui=ci.y[2],
          barcol="blue", col="blue",
          err="y",
          pch=NA,
          add=TRUE )

#   rect(ci.x[1], ci.y[1], ci.x[2], ci.y[2], border="blue",
#        density=5,
#        angle=45,
#        col="blue" )


   ## Empirical univariate 90 percent confidence region
   box <- cbind( x=quantile( geyser$duration, c(0.05, 0.95 )), 
                 y=quantile( geyser$waiting, c(0.05, 0.95 )) )

   rect(box[1,1], box[1,2], box[2,1], box[2,2], border="red",
        density=5,
        angle=-45,
        col="red" )

   ## now a nice legend
   legend( "topright", legend=c("       Region type",
                                "Univariate Normal Theory",
                                "Univarite Empirical",
                                "Smoothed Bivariate"),
           lwd=c(NA,1,1,1),
           col=c("black","blue","red","green"),
           lty=c(NA,1,1,1)
         )

   ####
   ## Test with a large number of points
   ####
   
# }
# NOT RUN {
   x <- rnorm(60000, sd=1)
   y <- c( rnorm(40000, mean=x, sd=1),
           rnorm(20000, mean=x+4, sd=1) )

   hist2d(x,y)
   ci <- ci2d(x,y)
   ci
   
# }

Run the code above in your browser using DataLab