This function implements a block descent algorithm to find the maximum of the Gaussian log-likelihood under the constraint that the concentration matrix is a Laplacian matrix. See roe2021;textualgraphicalExtremes for details.
emtp2(Gamma, tol = 1e-06, verbose = TRUE, initial_point = TRUE)
A list consisting of:
G_emtp2
The optimal value of the variogram matrix
it
The number of iterations
conditionally negative semidefinite matrix. This will be typically the empirical variogram matrix.
The convergence tolerance. The algorithm terminates when the sum of absolute differences between two iterations is below tol
.
if TRUE (default) the output will be printed.
if TRUE (default), the algorithm will construct an initial point before the iteration steps.
Other parameter estimation methods:
data2mpareto()
,
emp_chi_multdim()
,
emp_chi()
,
emp_vario()
,
fmpareto_HR_MLE()
,
fmpareto_graph_HR()
,
loglik_HR()