Learn R Programming

greta (version 0.2.0)

distributions: probability distributions

Description

These functions can be used to define random variables in a greta model. They return a variable greta array that follows the specified distribution. This variable greta array can be used to represent a parameter with prior distribution, or used with distribution to define a distribution over a data greta array.

Usage

uniform(min, max, dim = NULL)

normal(mean, sd, dim = NULL, truncation = c(-Inf, Inf))

lognormal(meanlog, sdlog, dim = NULL, truncation = c(0, Inf))

bernoulli(prob, dim = NULL)

binomial(size, prob, dim = NULL)

beta_binomial(size, alpha, beta, dim = NULL)

negative_binomial(size, prob, dim = NULL)

hypergeometric(m, n, k, dim = NULL)

poisson(lambda, dim = NULL)

gamma(shape, rate, dim = NULL, truncation = c(0, Inf))

inverse_gamma(alpha, beta, dim = NULL, truncation = c(0, Inf))

weibull(shape, scale, dim = NULL, truncation = c(0, Inf))

exponential(rate, dim = NULL, truncation = c(0, Inf))

pareto(a, b, dim = NULL, truncation = c(0, Inf))

student(df, mu, sigma, dim = NULL, truncation = c(-Inf, Inf))

laplace(mu, sigma, dim = NULL, truncation = c(-Inf, Inf))

beta(shape1, shape2, dim = NULL, truncation = c(0, 1))

cauchy(location, scale, dim = NULL, truncation = c(-Inf, Inf))

chi_squared(df, dim = NULL, truncation = c(0, Inf))

logistic(location, scale, dim = NULL, truncation = c(-Inf, Inf))

f(df1, df2, dim = NULL, truncation = c(0, Inf))

multivariate_normal(mean, Sigma, dim = 1)

wishart(df, Sigma)

lkj_correlation(eta, dim = 2)

multinomial(size, prob, dim = 1)

categorical(prob, dim = 1)

dirichlet(alpha, dim = 1)

dirichlet_multinomial(size, alpha, dim = 1)

Arguments

min, max

scalar values giving optional limits to uniform variables. Like lower and upper, these must be specified as numerics, they cannot be greta arrays (though see details for a workaround). Unlike lower and upper, they must be finite. min must always be less than max.

dim

the dimensions of the greta array to be returned, either a scalar or a vector of positive integers. See details.

mean, meanlog, location, mu

unconstrained parameters

sd, sdlog, sigma, lambda, shape, rate, df, scale, shape1, shape2, alpha, beta, df1, df2, a, b, eta

positive parameters, alpha must be a vector for dirichlet and dirichlet_multinomial.

truncation

a length-two vector giving values between which to truncate the distribution, similarly to the lower and upper arguments to variable

prob

probability parameter (0 < prob < 1), must be a vector for multinomial and categorical

size, m, n, k

positive integer parameter

Sigma

positive definite variance-covariance matrix parameter

Details

The discrete probability distributions (bernoulli, binomial, negative_binomial, poisson, multinomial, categorical, dirichlet_multinomial) can be used when they have fixed values (e.g. defined as a likelihood using distribution, but not as unknown variables.

For univariate distributions dim gives the dimensions of the greta array to create. Each element of the greta array will be (independently) distributed according to the distribution. dim can also be left at its default of NULL, in which case the dimension will be detected from the dimensions of the parameters (provided they are compatible with one another).

For multivariate_normal(), multinomial(), and categorical() dim must be a scalar giving the number of rows in the resulting greta array, each row being (independently) distributed according to the multivariate normal distribution. The number of columns will always be the dimension of the distribution, determined from the parameters specified. wishart() always returns a single square, 2D greta array, with dimension determined from the parameter Sigma.

multinomial() does not check that observed values sum to size, and categorical() does not check that only one of the observed entries is 1. It's the user's responsibility to check their data matches the distribution!

The parameters of uniform must be fixed, not greta arrays. This ensures these values can always be transformed to a continuous scale to run the samplers efficiently. However, a hierarchical uniform parameter can always be created by defining a uniform variable constrained between 0 and 1, and then transforming it to the required scale. See below for an example.

Wherever possible, the parameterisation and argument names of greta distributions matches commonly used R functions for distributions, such as those in the stats or extraDistr packages. The following table states the distribution function to which greta's implementation corresponds:

greta reference
uniform stats::dunif
normal stats::dnorm
lognormal stats::dlnorm
bernoulli extraDistr::dbern
binomial stats::dbinom
beta_binomial extraDistr::dbbinom
negative_binomial stats::dnbinom
hypergeometric stats::dhyper
poisson stats::dpois
gamma stats::dgamma
inverse_gamma extraDistr::dinvgamma
weibull stats::dweibull
exponential stats::dexp
pareto extraDistr::dpareto
student extraDistr::dnst
laplace extraDistr::dlaplace
beta stats::dbeta
cauchy stats::dcauchy
chi_squared stats::dchisq
logistic stats::dlogis
f stats::df
multivariate_normal mvtnorm::dmvnorm
multinomial stats::dmultinom
categorical stats::dmultinom (size = 1)
dirichlet extraDistr::ddirichlet
dirichlet_multinomial extraDistr::ddirmnom
wishart stats::rWishart
lkj_correlation rethinking::dlkjcorr

Examples

Run this code
# NOT RUN {
# a uniform parameter constrained to be between 0 and 1
phi = uniform(min = 0, max = 1)

# a length-three variable, with each element following a standard normal
# distribution
alpha = normal(0, 1, dim = 3)

# a length-three variable of lognormals
sigma = lognormal(0, 3, dim = 3)

# a hierarchical uniform, constrained between alpha and alpha + sigma,
eta = alpha + uniform(0, 1, dim = 3) * sigma

# a hierarchical distribution
mu = normal(0, 1)
sigma = lognormal(0, 1)
theta = normal(mu, sigma)

# a vector of 3 variables drawn from the same hierarchical distribution
thetas = normal(mu, sigma, dim = 3)

# a matrix of 12 variables drawn from the same hierarchical distribution
thetas = normal(mu, sigma, dim = c(3, 4))

# a multivariate normal variable, with correlation between two elements
Sig <- diag(4)
Sig[3, 4] <- Sig[4, 3] <- 0.6
theta = multivariate_normal(rep(mu, 4), Sig)

# 10 independent replicates of that
theta = multivariate_normal(rep(mu, 4), Sig, dim = 10)

# a Wishart variable with the same covariance parameter
theta = wishart(df = 5, Sigma = Sig)
# }

Run the code above in your browser using DataLab