# NOT RUN {
# Generate data.
n = 50; p = 10
X = matrix(rnorm(n*p), n, p)
X.test = matrix(0, 101, p)
X.test[,1] = seq(-2, 2, length.out = 101)
Y = X[,1] * rnorm(n)
# Train a quantile forest.
q.forest = quantile_forest(X, Y, quantiles=c(0.1, 0.5, 0.9))
# Make predictions.
q.hat = predict(q.forest, X.test)
# Make predictions for different quantiles than those used in training.
q.hat = predict(q.forest, X.test, quantiles=c(0.1, 0.9))
# Train a quantile forest using regression splitting instead of quantile-based
# splits, emulating the approach in Meinshausen (2006).
meins.forest = quantile_forest(X, Y, regression.splitting=TRUE)
# Make predictions for the desired quantiles.
q.hat = predict(meins.forest, X.test, quantiles=c(0.1, 0.5, 0.9))
# }
Run the code above in your browser using DataLab