# NOT RUN {
# Find the optimal tuning parameters.
n = 500; p = 10
X = matrix(rnorm(n*p), n, p)
Y = X[,1] * rnorm(n)
params = tune_regression_forest(X, Y)$params
# Use these parameters to train a regression forest.
tuned.forest = regression_forest(X, Y, num.trees = 1000,
min.node.size = as.numeric(params["min.node.size"]),
sample.fraction = as.numeric(params["sample.fraction"]),
mtry = as.numeric(params["mtry"]),
alpha = as.numeric(params["alpha"]),
imbalance.penalty = as.numeric(params["imbalance.penalty"]))
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab