# \donttest{
# Train a causal forest.
n <- 100
p <- 10
X <- matrix(rnorm(n * p), n, p)
W <- rbinom(n, 1, 0.5)
Y <- pmax(X[, 1], 0) * W + X[, 2] + pmin(X[, 3], 0) + rnorm(n)
c.forest <- causal_forest(X, Y, W)
# Predict using the forest.
X.test <- matrix(0, 101, p)
X.test[, 1] <- seq(-2, 2, length.out = 101)
c.pred <- predict(c.forest, X.test)
# Predict on out-of-bag training samples.
c.pred <- predict(c.forest)
# Predict with confidence intervals; growing more trees is now recommended.
c.forest <- causal_forest(X, Y, W, num.trees = 500)
c.pred <- predict(c.forest, X.test, estimate.variance = TRUE)
# }
Run the code above in your browser using DataLab