drFitSpline
and drBootSpline
to generate a table with estimates for EC50 and respecting statistics.
drFit(gcFitData, control = grofit.control())
grofit.control
containing a list of options generated by the function grofit.control.
drFit
gcFitData
.drBootSpline
objects generated by the call of drBootSpline
for each distinct experiments. Note: access to each object via double brace: LIST[[1]]
, LIST[[2]]
...drFitSpline
objects generated by the call of drFitSpline
for each distinct experiments. Note: access to each object via double brace: LIST[[1]]
, LIST[[2]]
...grofit.control
containing list of options passed to the function as control
.gcFit
. It therefore expects a certain input format. For each of the distinct experiments specified by the names in the first column, the function relates the concentration (3. column) to a characteristic growth parameter (8.-55. columns). The choice of the parameter depends on the option parameter
specified by the grofit.control
function. The concentration and parameter are passed to drFitSpline
and drBootSpline
, which perform the dose-response curve estimation and bootstrapping.
drFitSpline
, drBootSpline
, drBootSpline
, summary.drFit
, plot.drFit
# generate random growth curve data set
foo <- ran.data(100, 25)
time <- foo$time
data <- foo$data
# fit dose response curves
drData <- gcFit(time, data, control = grofit.control(interactive = FALSE))
# use the output of gcFit as an input for drFit
drFit.result <- drFit(summary(drData))
print(summary(drFit.result))
plot(drFit.result)
Run the code above in your browser using DataLab