grofit.control
with the different grofit options and also allows to change these options.
grofit.control(neg.nan.act = FALSE, clean.bootstrap = TRUE, suppress.messages = FALSE, fit.opt = "b", log.x.gc = FALSE, log.y.gc = FALSE, interactive = TRUE, nboot.gc = 0, smooth.gc= NULL, model.type=c("logistic", "richards","gompertz", "gompertz.exp"), have.atleast = 6, parameter = 9, smooth.dr = NULL, log.x.dr = FALSE, log.y.dr = FALSE, nboot.dr = 0)
NA
values appear (TRUE
). Otherwise the program removes this values silently (FALSE
). Improper values may be caused by incorrect data or input errors. Default: FALSE
.
TRUE
) or kept (FALSE
). Note: Infinite values are always removed. Default: TRUE
.
grofit
messages (information about current growth curve, EC50 values etc.) should be displayed (FALSE
) or not (TRUE
). This option is meant to speed up the processing of high throuput data. Note: warnings are still displayed. Default: FALSE
.
FALSE
.
FALSE
.
TRUE
.
nboot.gc=0
to disable the bootstrap. Default: 0
.
smooth.gc=NULL
causes the program to query an optimal value via cross validation techniques. Note: This is partly experimental. In future improved implementations of the smooth.spline
function may lead to different results. See documentation of the R function smooth.spline
for further details. Especially for datasets with few data points the option NULL
might result in a too small smoothing parameter, which produces an error in smooth.spline
. In that case the usage of a fixed value is recommended.
Default: NULL
.
c("gompertz", "logistic", "gompertz.exp", "richards")
.
6
.
gcFit
, drFit
or summary.gcFit
for further details. Default: 9
, which represents the maximum slope of the parametric growth curve fit.
smooth.spline
during dose response curve estimation. Usually (not necessesary) in (0; 1]. See documentation of smooth.spline
for further details. Default: NULL
.
FALSE
.
FALSE
.
nboot.dr=0
to disable bootstrapping. Default: 0
.
# default option
DefOpt <- grofit.control()
# user defined
MyOpt <- grofit.control(smooth.gc=0.5, model.type=c("gompertz", "logistic"))
Run the code above in your browser using DataLab