# NOT RUN {
library(ggplot2)
# set up a group sequential design
x <- gsDesign(k = 5)
x
# set up a prior distribution for the treatment effect
# that is normal with mean .75*x$delta and standard deviation x$delta/2
mu0 <- .75 * x$delta
sigma0 <- x$delta / 2
prior <- normalGrid(mu = mu0, sigma = sigma0)
# compute POS for the design given the above prior distribution for theta
gsPOS(x = x, theta = prior$z, wgts = prior$wgts)
# assume POS should only count cases in prior where theta >= x$delta/2
gsPOS(x = x, theta = prior$z, wgts = prior$wgts * (prior$z >= x$delta / 2))
# assuming a z-value at lower bound at analysis 2, what are conditional
# boundary crossing probabilities for future analyses
# assuming theta values from x as well as a value based on the interim
# observed z
CP <- gsCP(x, i = 2, zi = x$lower$bound[2])
CP
# summing values for crossing future upper bounds gives overall
# conditional power for each theta value
CP$theta
t(CP$upper$prob) %*% c(1, 1, 1)
# compute predictive probability based on above assumptions
gsPP(x, i = 2, zi = x$lower$bound[2], theta = prior$z, wgts = prior$wgts)
# if it is known that boundary not crossed at interim 2, use
# gsCPOS to compute conditional POS based on this
gsCPOS(x = x, i = 2, theta = prior$z, wgts = prior$wgts)
# 2-stage example to compare results to direct computation
x <- gsDesign(k = 2)
z1 <- 0.5
n1 <- x$n.I[1]
n2 <- x$n.I[2] - x$n.I[1]
thetahat <- z1 / sqrt(n1)
theta <- c(thetahat, 0, x$delta)
# conditional power direct computation - comparison w gsCP
pnorm((n2 * theta + z1 * sqrt(n1) - x$upper$bound[2] * sqrt(n1 + n2)) / sqrt(n2))
gsCP(x = x, zi = z1, i = 1)$upper$prob
# predictive power direct computation - comparison w gsPP
# use same prior as above
mu0 <- .75 * x$delta * sqrt(x$n.I[2])
sigma2 <- (.5 * x$delta)^2 * x$n.I[2]
prior <- normalGrid(mu = .75 * x$delta, sigma = x$delta / 2)
gsPP(x = x, zi = z1, i = 1, theta = prior$z, wgts = prior$wgts)
t <- .5
z1 <- .5
b <- z1 * sqrt(t)
# direct from Proschan, Lan and Wittes eqn 3.10
# adjusted drift at n.I[2]
pnorm(((b - x$upper$bound[2]) * (1 + t * sigma2) +
(1 - t) * (mu0 + b * sigma2)) /
sqrt((1 - t) * (1 + sigma2) * (1 + t * sigma2)))
# plot prior then posterior distribution for unblinded analysis with i=1, zi=1
xp <- gsPosterior(x = x, i = 1, zi = 1, prior = prior)
plot(x = xp$z, y = xp$density, type = "l", col = 2, xlab = expression(theta), ylab = "Density")
points(x = x$z, y = x$density, col = 1)
# add posterior plot assuming only knowlede that interim bound has
# not been crossed at interim 1
xpb <- gsPosterior(x = x, i = 1, zi = 1, prior = prior)
lines(x = xpb$z, y = xpb$density, col = 4)
# prediction interval based in interim 1 results
# start with point estimate, followed by 90% prediction interval
gsPI(x = x, i = 1, zi = z1, j = 2, theta = prior$z, wgts = prior$wgts, level = 0)
gsPI(x = x, i = 1, zi = z1, j = 2, theta = prior$z, wgts = prior$wgts, level = .9)
# }
Run the code above in your browser using DataLab