# NOT RUN {
library(ggplot2)
# 3-parameter specification: a, b, df
sfTDist(1, 1:5 / 6, c(-1, 1.5, 4))$spend
# 5-parameter specification fits 2 points, in this case
# the 1st 2 interims are at 25% and 50% of observations with
# cumulative error spending of 10% and 20%, respectively
# final parameter is df
sfTDist(1, 1:3 / 4, c(.25, .5, .1, .2, 4))$spend
# 6-parameter specification fits 3 points
# Interims are at 25%. 50% and 75% of observations
# with cumulative spending of 10%, 20% and 50%, respectively
# Note: not all 3 point combinations can be fit
sfTDist(1, 1:3 / 4, c(.25, .5, .75, .1, .2, .5))$spend
# Example of error message when the 3-points specified
# in the 6-parameter version cannot be fit
try(sfTDist(1, 1:3 / 4, c(.25, .5, .75, .1, .2, .3))$errmsg)
# sfCauchy (sfTDist with 1 df) and sfNormal (sfTDist with infinite df)
# show the limits of what sfTdist can fit
# for the third point are u3 from 0.344 to 0.6 when t3=0.75
sfNormal(1, 1:3 / 4, c(.25, .5, .1, .2))$spend[3]
sfCauchy(1, 1:3 / 4, c(.25, .5, .1, .2))$spend[3]
# plot a few t-distribution spending functions fitting
# t=0.25, .5 and u=0.1, 0.2
# to demonstrate the range of flexibility
t <- 0:100 / 100
plot(t, sfTDist(0.025, t, c(.25, .5, .1, .2, 1))$spend,
xlab = "Proportion of final sample size",
ylab = "Cumulative Type I error spending",
main = "t-Distribution Spending Function Examples", type = "l"
)
lines(t, sfTDist(0.025, t, c(.25, .5, .1, .2, 1.5))$spend, lty = 2)
lines(t, sfTDist(0.025, t, c(.25, .5, .1, .2, 3))$spend, lty = 3)
lines(t, sfTDist(0.025, t, c(.25, .5, .1, .2, 10))$spend, lty = 4)
lines(t, sfTDist(0.025, t, c(.25, .5, .1, .2, 100))$spend, lty = 5)
legend(
x = c(.0, .3), y = .025 * c(.7, 1), lty = 1:5,
legend = c("df = 1", "df = 1.5", "df = 3", "df = 10", "df = 100")
)
# }
Run the code above in your browser using DataLab