# Derive Group Sequential Design
x <- gsSurv(k = 4, alpha = 0.025, beta = 0.1, timing = c(.5,.65,.8), sfu = sfLDOF,
sfl = sfHSD, sflpar = 2, lambdaC = log(2)/6, hr = 0.6,
eta = 0.01 , gamma = c(2.5,5,7.5,10), R = c( 2,2,2,6 ),
T = 30 , minfup = 18)
x$n.I
# Analysis at IA2
sequentialPValue(gsD=x,n.I=c(100,160),Z=c(1.5,2))
# Use planned spending instead of information fraction; do final analysis
sequentialPValue(gsD=x,n.I=c(100,160,190,230),Z=c(1.5,2,2.5,3),usTime=x$timing)
# Check bounds for updated design to verify at least one was crossed
xupdate <- gsDesign(maxn.IPlan=max(x$n.I),n.I=c(100,160,190,230),usTime=x$timing,
delta=x$delta,delta1=x$delta1,k=4,alpha=x$alpha,test.type=1,
sfu=x$upper$sf,sfupar=x$upper$param)
Run the code above in your browser using DataLab