# as_rtf for gsBinomialExact
zz <- gsBinomialExact(
k = 3, theta = seq(0.1, 0.9, 0.1), n.I = c(12, 24, 36),
a = c(-1, 0, 11), b = c(5, 9, 12)
)
zz %>%
as_table() %>%
as_rtf(
file = tempfile(fileext = ".rtf"),
title = "Power/Type I Error and Expected Sample Size for a Group Sequential Design"
)
safety_design <- binomialSPRT(
p0 = .04, p1 = .1, alpha = .04, beta = .2, minn = 4, maxn = 75
)
safety_power <- gsBinomialExact(
k = length(safety_design$n.I),
theta = seq(.02, .16, .02),
n.I = safety_design$n.I,
a = safety_design$lower$bound,
b = safety_design$upper$bound
)
safety_power %>%
as_table() %>%
as_rtf(
file = tempfile(fileext = ".rtf"),
theta_label = "Underlying\nAE Rate",
prob_decimals = 3,
bound_label = c("Low Rate", "High Rate")
)
# as_rtf for gsBoundSummary
xgs <- gsSurv(lambdaC = .2, hr = .5, eta = .1, T = 2, minfup = 1.5)
gsBoundSummary(xgs, timename = "Year", tdigits = 1) %>% as_rtf(file = tempfile(fileext = ".rtf"))
ss <- nSurvival(
lambda1 = .2, lambda2 = .1, eta = .1, Ts = 2, Tr = .5,
sided = 1, alpha = .025, ratio = 2
)
xs <- gsDesign(nFixSurv = ss$n, n.fix = ss$nEvents, delta1 = log(ss$lambda2 / ss$lambda1))
gsBoundSummary(xs, logdelta = TRUE, ratio = ss$ratio) %>% as_rtf(file = tempfile(fileext = ".rtf"))
xs <- gsDesign(nFixSurv = ss$n, n.fix = ss$nEvents, delta1 = log(ss$lambda2 / ss$lambda1))
gsBoundSummary(xs, logdelta = TRUE, ratio = ss$ratio) %>%
as_rtf(file = tempfile(fileext = ".rtf"),
footnote_specify = "Z",
footnote_text = "Z-Score")
Run the code above in your browser using DataLab