Learn R Programming

gss (version 2.2-8)

family: Utility Functions for Error Families

Description

Utility functions for fitting Smoothing Spline ANOVA models with non-Gaussian responses.

Usage

mkdata.binomial(y, eta, wt, offset)
dev.resid.binomial(y, eta, wt)
dev.null.binomial(y, wt, offset)
cv.binomial(y, eta, wt, hat, alpha)
y0.binomial(y, eta0, wt)
proj0.binomial(y0, eta, offset)
kl.binomial(eta0, eta1, wt)
cfit.binomial(y, wt, offset)

mkdata.poisson(y, eta, wt, offset) dev.resid.poisson(y, eta, wt) dev.null.poisson(y, wt, offset) cv.poisson(y, eta, wt, hat, alpha, sr, q) y0.poisson(eta0) proj0.poisson(y0, eta, wt, offset) kl.poisson(eta0, eta1, wt) cfit.poisson(y, wt, offset)

mkdata.Gamma(y, eta, wt, offset) dev.resid.Gamma(y, eta, wt) dev.null.Gamma(y, wt, offset) cv.Gamma(y, eta, wt, hat, rss, alpha) y0.Gamma(eta0) proj0.Gamma(y0, eta, wt, offset) kl.Gamma(eta0, eta1, wt) cfit.Gamma(y, wt, offset)

mkdata.inverse.gaussian(y, eta, wt, offset) dev.resid.inverse.gaussian(y, eta, wt) dev.null.inverse.gaussian(y, wt, offset) cv.inverse.gaussian(y, eta, wt, hat, rss, alpha) y0.inverse.gaussian(eta0) proj0.inverse.gaussian(y0, eta, wt, offset) kl.inverse.gaussian(eta0, eta1, wt) cfit.inverse.gaussian(y, wt, offset)

mkdata.nbinomial(y, eta, wt, offset, nu) dev.resid.nbinomial(y, eta, wt) dev.null.nbinomial(y, wt, offset) cv.nbinomial(y, eta, wt, hat, alpha) y0.nbinomial(y,eta0,nu) proj0.nbinomial(y0, eta, wt, offset) kl.nbinomial(eta0, eta1, wt, nu) cfit.nbinomial(y, wt, offset, nu)

mkdata.polr(y, eta, wt, offset, nu) dev.resid.polr(y, eta, wt, nu) dev.null.polr(y, wt, offset) cv.polr(y, eta, wt, hat, nu, alpha) y0.polr(eta0) proj0.polr(y0, eta, wt, offset, nu) kl.polr(eta0, eta1, wt) cfit.polr(y, wt, offset)

mkdata.weibull(y, eta, wt, offset, nu) dev.resid.weibull(y, eta, wt, nu) dev.null.weibull(y, wt, offset, nu) cv.weibull(y, eta, wt, hat, nu, alpha) y0.weibull(y, eta0, nu) proj0.weibull(y0, eta, wt, offset, nu) kl.weibull(eta0, eta1, wt, nu, int) cfit.weibull(y, wt, offset, nu)

mkdata.lognorm(y, eta, wt, offset, nu) dev.resid.lognorm(y, eta, wt, nu) dev0.resid.lognorm(y, eta, wt, nu) dev.null.lognorm(y, wt, offset, nu) cv.lognorm(y, eta, wt, hat, nu, alpha) y0.lognorm(y, eta0, nu) proj0.lognorm(y0, eta, wt, offset, nu) kl.lognorm(eta0, eta1, wt, nu, y0) cfit.lognorm(y, wt, offset, nu)

mkdata.loglogis(y, eta, wt, offset, nu) dev.resid.loglogis(y, eta, wt, nu) dev0.resid.loglogis(y, eta, wt, nu) dev.null.loglogis(y, wt, offset, nu) cv.loglogis(y, eta, wt, hat, nu, alpha) y0.loglogis(y, eta0, nu) proj0.loglogis(y0, eta, wt, offset, nu) kl.loglogis(eta0, eta1, wt, nu, y0) cfit.loglogis(y, wt, offset, nu)

Arguments

y

Model response.

eta

Fitted values on link scale.

wt

Model weights.

offset

Model offset.

nu

Size for nbinomial. Inverse scale for log life time.