Craft numerical functions to be used by mkterm
to
assemble model terms.
mkrk.tp(dm, order, mesh, weight)
mkphi.tp(dm, order, mesh, weight)
mkrk.tp.p(dm, order)
mkphi.tp.p(dm, order)mkrk.sphere(order)
A list of two elements.
Function definition.
Portable local constants derived from the arguments.
Dimension of the variable \(d\).
Order of the differential operator \(m\).
Normalizing mesh.
Normalizing weights.
mkrk.tp
, mkphi.tp
, mkrk.tp.p
, and
mkphi.tp.p
implement the construction in Gu (2002,
Sec. 4.4). Thin-plate splines are defined for \(2m>d\).
mkrk.tp.p
generates the pseudo kernel, and mkphi.tp.p
generates the \((m+d-1)!/d!/(m-1)!\) lower order polynomials with
total order less than \(m\).
mkphi.tp
generates normalized lower order polynomials
orthonormal w.r.t. a norm specified by mesh
and
weight
, and mkrk.tp
conditions the pseudo kernel to
generate the reproducing kernel orthogonal to the lower order
polynomials w.r.t. the norm.
mkrk.sphere
implements the reproducing kernel construction of
Wahba (1981) for \(m=2,3,4\).
Gu, C. (2013), Smoothing Spline ANOVA Models (2nd Ed). New York: Springer-Verlag.
Wahba, G. (1981), Spline interpolation and smoothing on the sphere. SIAM Journal on Scientific and Statistical Computing, 2, 5--16.
mkterm
, mkfun.poly
, and
mkrk.nominal
.