Learn R Programming

gss (version 2.2-8)

predict.ssllrm: Evaluating Log-Linear Regression Model Fits

Description

Evaluate conditional density in a log-linear regression model fit at arbitrary x, or contrast of log conditional density possibly with standard errors for constructing Bayesian confidence intervals.

Usage

# S3 method for ssllrm
predict(object, x, y=object$qd.pt, odds=NULL, se.odds=FALSE, ...)

Value

For odds=NULL, predict.ssanova returns a vector/matrix of the estimated f(y|x).

When odds is given, it should match y in length and the coefficients must add to zero; predict.ssanova then returns a vector of estimated "odds ratios" if se.odds=FALSE

or a list consisting of the following elements if

se.odds=TRUE.

fit

Vector of evaluated fit.

se.fit

Vector of standard errors.

Arguments

object

Object of class "ssllrm".

x

Data frame of x values.

y

Data frame of y values; y-variables must be factors.

odds

Optional coefficients of contrast.

se.odds

Flag indicating if standard errors are required. Ignored when odds=NULL.

...

Ignored.

See Also

Fitting function ssllrm.