In case spatio-temporal data is provided, the function variogramST
is called with a different set of parameters.
## S3 method for class 'gstat':
variogram(object, ...)
## S3 method for class 'formula':
variogram(object, locations = coordinates(data), data, ...)
## S3 method for class 'default':
variogram(object, locations, X, cutoff, width = cutoff/15,
alpha = 0, beta = 0, tol.hor = 90/length(alpha), tol.ver =
90/length(beta), cressie = FALSE, dX = numeric(0), boundaries =
numeric(0), cloud = FALSE, trend.beta = NULL, debug.level = 1,
cross = TRUE, grid, map = FALSE, g = NULL, ..., projected = TRUE,
lambda = 1.0, verbose = FALSE, covariogram = FALSE, PR = FALSE,
pseudo = -1)
## S3 method for class 'line':
variogram(..., deprecate = TRUE)
## S3 method for class 'gstatVariogram':
print(x, ...)
## S3 method for class 'variogramCloud':
print(x, ...)gstat; in this form, direct
and cross (residual) variograms are calculated for all variables and
variable pairs defined in object; in case of variogram.formula,
formula defining the response vector an~x+y; see examples.For variogram.default: list with coordinate matrices, each with the number of
gstat and has more than one variable; if
TRUE, all direct and cross variograms are computed; if
equal to "ST", direct and cross variograms are computed fvariogram or variogramCloud
to be printedcutoff and width
are given, a variogram map is returned. This requires package
sp. Alternatively, a map can be passed, of class SpatialDataFrameGrid
(see sp docs)variogram.line will
be deprecated in favour of the identical variogramLinevariogram.formula or variogram.gstatIn other cases, an object of class "gstatVariogram" with the following fields:
variogramCloud see belowvariogramCloud, with the field
np encoding the numbers of the point pair that contributed to a
variogram cloud estimate, as follows. The first point is found by 1 + the
integer division of np by the .BigInt attribute of the returned
object, the second point by 1 + the remainder of that division.
as.data.frame.variogramCloud returns no np field,
but does the decoding into:variogramST
for details.Cressie, N., C. Wikle, 2011, Statistics for Spatio-temporal Data, Wiley.
Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30: 683-691.
variogramST for details on the spatio-temporal sample variogram.library(sp)
data(meuse)
# no trend:
coordinates(meuse) = ~x+y
variogram(log(zinc)~1, meuse)
# residual variogram w.r.t. a linear trend:
variogram(log(zinc)~x+y, meuse)
# directional variogram:
variogram(log(zinc)~x+y, meuse, alpha=c(0,45,90,135))
variogram(log(zinc)~1, meuse, width=90, cutoff=1300)
# GLS residual variogram:
v = variogram(log(zinc)~x+y, meuse)
v.fit = fit.variogram(v, vgm(1, "Sph", 700, 1))
v.fit
set = list(gls=1)
v
g = gstat(NULL, "log-zinc", log(zinc)~x+y, meuse, model=v.fit, set = set)
variogram(g)
if (require(rgdal)) {
proj4string(meuse) = CRS("+init=epsg:28992")
meuse.ll = spTransform(meuse, CRS("+proj=longlat"))
# variogram of unprojected data, using great-circle distances, returning km as units
variogram(log(zinc) ~ 1, meuse.ll)
}Run the code above in your browser using DataLab