data(wind)
summary(wind)
wind.loc
library(sp) # char2dms
wind.loc$y = as.numeric(char2dms(as.character(wind.loc[["Latitude"]])))
wind.loc$x = as.numeric(char2dms(as.character(wind.loc[["Longitude"]])))
coordinates(wind.loc) = ~x+y
if (FALSE) {
# fig 1:
library(maps)
library(mapdata)
map("worldHires", xlim = c(-11,-5.4), ylim = c(51,55.5))
points(wind.loc, pch=16)
text(coordinates(wind.loc), pos=1, label=wind.loc$Station)
}
wind$time = ISOdate(wind$year+1900, wind$month, wind$day)
# time series of e.g. Dublin data:
plot(DUB~time, wind, type= 'l', ylab = "windspeed (knots)", main = "Dublin")
# fig 2:
#wind = wind[!(wind$month == 2 & wind$day == 29),]
wind$jday = as.numeric(format(wind$time, '%j'))
windsqrt = sqrt(0.5148 * as.matrix(wind[4:15]))
Jday = 1:366
windsqrt = windsqrt - mean(windsqrt)
daymeans = sapply(split(windsqrt, wind$jday), mean)
plot(daymeans ~ Jday)
lines(lowess(daymeans ~ Jday, f = 0.1))
# subtract the trend:
meanwind = lowess(daymeans ~ Jday, f = 0.1)$y[wind$jday]
velocity = apply(windsqrt, 2, function(x) { x - meanwind })
# match order of columns in wind to Code in wind.loc:
pts = coordinates(wind.loc[match(names(wind[4:15]), wind.loc$Code),])
# fig 3, but not really yet...
dists = spDists(pts, longlat=TRUE)
corv = cor(velocity)
sel = !(as.vector(dists) == 0)
plot(as.vector(corv[sel]) ~ as.vector(dists[sel]),
xlim = c(0,500), ylim = c(.4, 1), xlab = "distance (km.)",
ylab = "correlation")
# plots all points twice, ignores zero distance
# now really get fig 3:
ros = rownames(corv) == "ROS"
dists.nr = dists[!ros,!ros]
corv.nr = corv[!ros,!ros]
sel = !(as.vector(dists.nr) == 0)
plot(as.vector(corv.nr[sel]) ~ as.vector(dists.nr[sel]), pch = 3,
xlim = c(0,500), ylim = c(.4, 1), xlab = "distance (km.)",
ylab = "correlation")
# add outlier:
points(corv[ros,!ros] ~ dists[ros,!ros], pch=16, cex=.5)
xdiscr = 1:500
# add correlation model:
lines(xdiscr, .968 * exp(- .00134 * xdiscr))
Run the code above in your browser using DataLab