powered by
Compute generalized logit and generalized inverse logit functions.
logit(x, min = 0, max = 1)inv.logit(x, min = 0, max = 1)
inv.logit(x, min = 0, max = 1)
Transformed value(s).
value(s) to be transformed
Lower end of logit interval
Upper end of logit interval
Gregory R. Warnes greg@warnes.net
The generalized logit function takes values on [min, max] and transforms them to span [-Inf,Inf] it is defined as:
$$y = log(\frac{p}{(1-p)})$$
where
$$p=\frac{(x-min)}{(max-min)}$$
The generalized inverse logit function provides the inverse transformation:
$$x = p' (max-min) + min$$
$$p'=\frac{exp(y)}{(1+exp(y))}$$
logit
x <- seq(0, 10, by = 0.25) xt <- logit(x, min = 0, max = 10) cbind(x, xt) y <- inv.logit(xt, min = 0, max = 10) cbind(x, xt, y)
Run the code above in your browser using DataLab