lifecycle::badge("maturing") Collection of tidiers that can be utilized in gtsummary. See details below.
tidy_standardize(
x,
exponentiate = FALSE,
conf.level = 0.95,
conf.int = TRUE,
...,
quiet = FALSE
)tidy_bootstrap(
x,
exponentiate = FALSE,
conf.level = 0.95,
conf.int = TRUE,
...,
quiet = FALSE
)
tidy_robust(
x,
exponentiate = FALSE,
conf.level = 0.95,
conf.int = TRUE,
vcov_estimation = NULL,
vcov_type = NULL,
vcov_args = NULL,
...,
quiet = FALSE
)
pool_and_tidy_mice(x, pool.args = NULL, ..., quiet = FALSE)
tidy_gam(x, conf.int = FALSE, exponentiate = FALSE, conf.level = 0.95, ...)
tidy_wald_test(x, tidy_fun = NULL, ...)
a regression model object
Logical indicating whether or not to exponentiate the
the coefficient estimates. This is typical for logistic and multinomial
regressions, but a bad idea if there is no log or logit link. Defaults
to FALSE.
The confidence level to use for the confidence interval
if conf.int = TRUE. Must be strictly greater than 0 and less than 1.
Defaults to 0.95, which corresponds to a 95 percent confidence interval.
Logical indicating whether or not to include a confidence
interval in the tidied output. Defaults to FALSE.
arguments passed to method;
pool_and_tidy_mice(): mice::tidy(x, ...)
tidy_standardize(): parameters::standardize_parameters(x, ...)
tidy_bootstrap(): parameters::bootstrap_parameters(x, ...)
tidy_robust(): parameters::model_parameters(x, ...)
Logical indicating whether to print messages in console. Default is
FALSE
arguments passed to
parameters::model_parameters()
named list of arguments passed to mice::pool() in
pool_and_tidy_mice(). Default is NULL
Option to specify a particular tidier function for the
model. Default is to use broom::tidy, but if an error occurs
then tidying of the model is attempted with parameters::model_parameters(),
if installed.
These tidiers are passed to tbl_regression() and tbl_uvregression() to
obtain modified results.
tidy_standardize() tidier to report standardized coefficients. The
parameters
package includes a wonderful function to estimate standardized coefficients.
The tidier uses the output from parameters::standardize_parameters(), and
merely takes the result and puts it in broom::tidy() format.
tidy_bootstrap() tidier to report bootstrapped coefficients. The
parameters
package includes a wonderful function to estimate bootstrapped coefficients.
The tidier uses the output from parameters::bootstrap_parameters(test = "p"), and
merely takes the result and puts it in broom::tidy() format.
tidy_robust() tidier to report robust standard errors, confidence intervals,
and p-values. The parameters
package includes a wonderful function to calculate robust standard errors, confidence intervals, and p-values
The tidier uses the output from parameters::model_parameters(), and
merely takes the result and puts it in broom::tidy() format. To use this
function with tbl_regression(), pass a function with the arguments for
tidy_robust() populated. This is easily done using purrr::partial() e.g.
tbl_regression(tidy_fun = partial(tidy_robust, vcov_estimation = "CL"))
pool_and_tidy_mice() tidier to report models resulting from multiply imputed data
using the mice package. Pass the mice model object before the model results
have been pooled. See example.
tidy_wald_test() tidier to report Wald p-values, wrapping the
aod::wald.test() function.
Use this tidier with add_global_p(anova_fun = tidy_wald_test)
Example 1

Example 2

Example 3
