lifecycle::badge("maturing") Collection of tidiers that can be utilized in gtsummary. See details below.
tidy_standardize(
x,
exponentiate = FALSE,
conf.level = 0.95,
conf.int = TRUE,
...,
quiet = FALSE
)tidy_bootstrap(
x,
exponentiate = FALSE,
conf.level = 0.95,
conf.int = TRUE,
...,
quiet = FALSE
)
tidy_robust(
x,
exponentiate = FALSE,
conf.level = 0.95,
conf.int = TRUE,
vcov = "HC",
vcov_args = NULL,
...,
quiet = FALSE
)
pool_and_tidy_mice(x, pool.args = NULL, ..., quiet = FALSE)
tidy_gam(x, conf.int = FALSE, exponentiate = FALSE, conf.level = 0.95, ...)
tidy_wald_test(x, tidy_fun = NULL, ...)
a regression model object
Logical indicating whether or not to exponentiate the
the coefficient estimates. This is typical for logistic and multinomial
regressions, but a bad idea if there is no log or logit link. Defaults
to FALSE
.
The confidence level to use for the confidence interval
if conf.int = TRUE
. Must be strictly greater than 0 and less than 1.
Defaults to 0.95, which corresponds to a 95 percent confidence interval.
Logical indicating whether or not to include a confidence
interval in the tidied output. Defaults to FALSE
.
arguments passed to method;
pool_and_tidy_mice()
: mice::tidy(x, ...)
tidy_standardize()
: parameters::standardize_parameters(x, ...)
tidy_bootstrap()
: parameters::bootstrap_parameters(x, ...)
tidy_robust()
: parameters::model_parameters(x, ...)
Logical indicating whether to print messages in console. Default is
FALSE
arguments passed to
parameters::model_parameters()
named list of arguments passed to mice::pool()
in
pool_and_tidy_mice()
. Default is NULL
Option to specify a particular tidier function for the
model. Default is to use broom::tidy()
, but if an error occurs
then tidying of the model is attempted with parameters::model_parameters()
,
if installed.
These tidiers are passed to tbl_regression()
and tbl_uvregression()
to
obtain modified results.
tidy_standardize()
tidier to report standardized coefficients. The
parameters
package includes a wonderful function to estimate standardized coefficients.
The tidier uses the output from parameters::standardize_parameters()
, and
merely takes the result and puts it in broom::tidy()
format.
tidy_bootstrap()
tidier to report bootstrapped coefficients. The
parameters
package includes a wonderful function to estimate bootstrapped coefficients.
The tidier uses the output from parameters::bootstrap_parameters(test = "p")
, and
merely takes the result and puts it in broom::tidy()
format.
tidy_robust()
tidier to report robust standard errors, confidence intervals,
and p-values. The parameters
package includes a wonderful function to calculate robust standard errors, confidence intervals, and p-values
The tidier uses the output from parameters::model_parameters()
, and
merely takes the result and puts it in broom::tidy()
format. To use this
function with tbl_regression()
, pass a function with the arguments for
tidy_robust()
populated. This is easily done using purrr::partial()
e.g.
tbl_regression(tidy_fun = partial(tidy_robust, vcov = "CL"))
pool_and_tidy_mice()
tidier to report models resulting from multiply imputed data
using the mice package. Pass the mice model object before the model results
have been pooled. See example.
tidy_wald_test()
tidier to report Wald p-values, wrapping the
aod::wald.test()
function.
Use this tidier with add_global_p(anova_fun = tidy_wald_test)
Example 1
Example 2
Example 3