Most regression models are handled by tbl_regression.default()
,
which uses broom::tidy()
to perform initial tidying of results. There are,
however, some model types that have modified default printing behavior.
Those methods are listed below.
# S3 method for model_fit
tbl_regression(x, ...)# S3 method for workflow
tbl_regression(x, ...)
# S3 method for survreg
tbl_regression(
x,
tidy_fun = function(x, ...) broom::tidy(x, ...) %>% dplyr::filter(.data$term !=
"Log(scale)"),
...
)
# S3 method for mira
tbl_regression(x, tidy_fun = pool_and_tidy_mice, ...)
# S3 method for mipo
tbl_regression(x, ...)
# S3 method for lmerMod
tbl_regression(
x,
tidy_fun = function(x, ...) broom.mixed::tidy(x, ..., effects = "fixed"),
...
)
# S3 method for glmerMod
tbl_regression(
x,
tidy_fun = function(x, ...) broom.mixed::tidy(x, ..., effects = "fixed"),
...
)
# S3 method for glmmTMB
tbl_regression(
x,
tidy_fun = function(x, ...) broom.mixed::tidy(x, ..., effects = "fixed"),
...
)
# S3 method for glmmadmb
tbl_regression(
x,
tidy_fun = function(x, ...) broom.mixed::tidy(x, ..., effects = "fixed"),
...
)
# S3 method for stanreg
tbl_regression(
x,
tidy_fun = function(x, ...) broom.mixed::tidy(x, ..., effects = "fixed"),
...
)
# S3 method for brmsfit
tbl_regression(
x,
tidy_fun = function(x, ...) broom.mixed::tidy(x, ..., effects = "fixed"),
...
)
# S3 method for gam
tbl_regression(x, tidy_fun = tidy_gam, ...)
# S3 method for tidycrr
tbl_regression(x, tidy_fun = tidycmprsk::tidy, ...)
# S3 method for crr
tbl_regression(x, ...)
# S3 method for multinom
tbl_regression(x, ...)
Regression model object
arguments passed to tbl_regression.default()
Option to specify a particular tidier function for the
model. Default is to use broom::tidy()
, but if an error occurs
then tidying of the model is attempted with parameters::model_parameters()
,
if installed.
The default method for tbl_regression()
model summary uses broom::tidy(x)
to perform the initial tidying of the model object. There are, however,
a few models that use modifications.
"parsnip/workflows"
: If the model was prepared using parsnip/workflows,
the original model fit is extracted and the original x=
argument
is replaced with the model fit. This will typically go unnoticed; however,if you've
provided a custom tidier in tidy_fun=
the tidier will be applied to the model
fit object and not the parsnip/workflows object.
"survreg"
: The scale parameter is removed, broom::tidy(x) %>% dplyr::filter(term != "Log(scale)")
"multinom"
: This multinomial outcome is complex, with one line per covariate per outcome (less the reference group)
"gam"
: Uses the internal tidier tidy_gam()
to print both parametric and smooth terms.
"tidycrr"
: Uses the tidier tidycmprsk::tidy()
to print the model terms.
"lmerMod"
, "glmerMod"
, "glmmTMB"
, "glmmadmb"
, "stanreg"
, "brmsfit"
: These mixed effects
models use broom.mixed::tidy(x, effects = "fixed")
. Specify tidy_fun = broom.mixed::tidy
to print the random components.