Learn R Programming

gym

OpenAI Gym is a open-source Python toolkit for developing and comparing reinforcement learning algorithms. This R package is a wrapper for the OpenAI Gym API, and enables access to an ever-growing variety of environments.

Installation

You can install:

  • the latest released version from CRAN:

    install.packages("gym")
  • the latest development version from Github:

    if (packageVersion("devtools") < 1.6) {
      install.packages("devtools")
    }
    devtools::install_github("paulhendricks/gym-R", subdir = "gym")

If you encounter a clear bug, please file a minimal reproducible example on github.

API

library(gym)

remote_base <- "http://127.0.0.1:5000"
client <- create_GymClient(remote_base)
print(client)

# Create environment
env_id <- "CartPole-v0"
instance_id <- env_create(client, env_id)
print(instance_id)

# List all environments
all_envs <- env_list_all(client)
print(all_envs)

# Set up agent
action_space_info <- env_action_space_info(client, instance_id)
print(action_space_info)
agent <- random_discrete_agent(action_space_info[["n"]])

# Run experiment, with monitor
outdir <- "/tmp/random-agent-results"
env_monitor_start(client, instance_id, outdir, force = TRUE, resume = FALSE)

episode_count <- 100
max_steps <- 200
reward <- 0
done <- FALSE

for (i in 1:episode_count) {
  ob <- env_reset(client, instance_id)
  for (i in 1:max_steps) {
    action <- env_action_space_sample(client, instance_id)
    results <- env_step(client, instance_id, action, render = TRUE)
    if (results[["done"]]) break
  }
}

# Dump result info to disk
env_monitor_close(client, instance_id)

People

License

Copy Link

Version

Install

install.packages('gym')

Monthly Downloads

124

Version

0.1.0

License

MIT + file LICENSE

Issues

Pull Requests

Stars

Forks

Maintainer

Paul Hendricks

Last Published

October 25th, 2016

Functions in gym (0.1.0)

env_monitor_close

Flush all monitor data to disk.
env_list_all

List all environments running on the server.
env_close

Flush all monitor data to disk.
env_action_space_contains

Evaluate whether an action is a member of an environments's action space.
env_create

Create an instance of the specified environment.
post_request

Submit a POST request to an OpenAI Gym server.
parse_server_error_or_raise_for_status

Parse the server error or raise for status.
random_discrete_agent

A sample random discrete agent.
print.GymClient

Represent a GymClient instance on the command line.
shutdown_server

Request a server shutdown.
upload

Flush all monitor data to disk.
get_request

Submit a GET request to an OpenAI Gym server.
gym

gym: Provides Access to the OpenAI Gym API
env_reset

Reset the state of the environment and return an initial observation.
env_step

Step though an environment using an action.
create_GymClient

Create a GymClient instance.
env_action_space_info

Get information (name and dimensions/bounds) of the environments's action space.
env_observation_space_info

Get information (name and dimensions/bounds) of the environment's observation space.
env_monitor_start

Start monitoring.
env_action_space_sample

Sample an action from the environments's action space.