Learn R Programming

h2o (version 3.44.0.3)

h2o.gainsLift: Access H2O Gains/Lift Tables

Description

Retrieve either a single or many Gains/Lift tables from H2O objects.

Usage

h2o.gainsLift(object, ...)

h2o.gains_lift(object, ...)

# S4 method for H2OModel h2o.gainsLift(object, newdata, valid = FALSE, xval = FALSE, ...)

# S4 method for H2OModelMetrics h2o.gainsLift(object)

Value

Calling this function on H2OModel objects returns a Gains/Lift table corresponding to the predict function.

Arguments

object

Either an H2OModel object or an H2OModelMetrics object.

...

further arguments to be passed to/from this method.

newdata

An H2OFrame object that can be scored on. Requires a valid response column.

valid

Retrieve the validation metric.

xval

Retrieve the cross-validation metric.

Details

The H2OModelMetrics version of this function will only take H2OBinomialMetrics objects.

See Also

predict for generating prediction frames, h2o.performance for creating H2OModelMetrics.

Examples

Run this code
if (FALSE) {
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.uploadFile(prostate_path)
prostate[, 2] <- as.factor(prostate[, 2])
model <- h2o.gbm(x = 3:9, y = 2, distribution = "bernoulli",
                 training_frame = prostate, validation_frame = prostate, nfolds = 3)
h2o.gainsLift(model)              ## extract training metrics
h2o.gainsLift(model, valid = TRUE)  ## extract validation metrics (here: the same)
h2o.gainsLift(model, xval = TRUE)  ## extract cross-validation metrics
h2o.gainsLift(model, newdata = prostate) ## score on new data (here: the same)
# Generating a ModelMetrics object
perf <- h2o.performance(model, prostate)
h2o.gainsLift(perf)               ## extract from existing metrics object
}

Run the code above in your browser using DataLab