Last chance! 50% off unlimited learning
Sale ends in
If "train", "valid", and "xval" parameters are FALSE (default), then the training residual deviance value is returned. If more than one parameter is set to TRUE, then a named vector of residual deviances are returned, where the names are "train", "valid" or "xval".
h2o.residual_deviance(object, train = FALSE, valid = FALSE, xval = FALSE)
An H2OModel or H2OModelMetrics
Retrieve the training residual deviance
Retrieve the validation residual deviance
Retrieve the cross-validation residual deviance
if (FALSE) {
library(h2o)
h2o.init()
prostate_path <- system.file("extdata", "prostate.csv", package = "h2o")
prostate <- h2o.importFile(prostate_path)
prostate[, 2] <- as.factor(prostate[, 2])
prostate_glm <- h2o.glm(y = "CAPSULE", x = c("AGE", "RACE", "PSA", "DCAPS"),
training_frame = prostate, family = "binomial",
nfolds = 0, alpha = 0.5, lambda_search = FALSE)
h2o.residual_deviance(prostate_glm, train = TRUE)
}
Run the code above in your browser using DataLab