Learn R Programming

h2o (version 3.10.5.3)

h2o.anomaly: Anomaly Detection via H2O Deep Learning Model

Description

Detect anomalies in an H2O dataset using an H2O deep learning model with auto-encoding.

Usage

h2o.anomaly(object, data, per_feature = FALSE)

Arguments

object

An object that represents the model to be used for anomaly detection.

data

An H2OFrame object.

per_feature

Whether to return the per-feature squared reconstruction error

Value

Returns an H2OFrame object containing the reconstruction MSE or the per-feature squared error.

See Also

h2o.deeplearning for making an H2OAutoEncoderModel.

Examples

Run this code

library(h2o)
h2o.init()
prosPath = system.file("extdata", "prostate.csv", package = "h2o")
prostate.hex = h2o.importFile(path = prosPath)
prostate.dl = h2o.deeplearning(x = 3:9, training_frame = prostate.hex, autoencoder = TRUE,
                               hidden = c(10, 10), epochs = 5)
prostate.anon = h2o.anomaly(prostate.dl, prostate.hex)
head(prostate.anon)
prostate.anon.per.feature = h2o.anomaly(prostate.dl, prostate.hex, per_feature=TRUE)
head(prostate.anon.per.feature)

Run the code above in your browser using DataLab