Learn R Programming

h2o (version 3.10.5.3)

h2o.gainsLift: Access H2O Gains/Lift Tables

Description

Retrieve either a single or many Gains/Lift tables from H2O objects.

Usage

h2o.gainsLift(object, ...)

# S4 method for H2OModel h2o.gainsLift(object, newdata, valid = FALSE, xval = FALSE, ...)

# S4 method for H2OModelMetrics h2o.gainsLift(object)

Arguments

object

Either an object or an object.

newdata

An H2OFrame object that can be scored on. Requires a valid response column.

valid

Retrieve the validation metric.

xval

Retrieve the cross-validation metric.

further arguments to be passed to/from this method.

Value

Calling this function on objects returns a Gains/Lift table corresponding to the predict function.

Details

The version of this function will only take objects.

See Also

predict for generating prediction frames, h2o.performance for creating .

Examples

Run this code

library(h2o)
h2o.init()
prosPath <- system.file("extdata", "prostate.csv", package="h2o")
hex <- h2o.uploadFile(prosPath)
hex[,2] <- as.factor(hex[,2])
model <- h2o.gbm(x = 3:9, y = 2, distribution = "bernoulli",
                 training_frame = hex, validation_frame = hex, nfolds=3)
h2o.gainsLift(model)              ## extract training metrics
h2o.gainsLift(model, valid=TRUE)  ## extract validation metrics (here: the same)
h2o.gainsLift(model, xval =TRUE)  ## extract cross-validation metrics
h2o.gainsLift(model, newdata=hex) ## score on new data (here: the same)
# Generating a ModelMetrics object
perf <- h2o.performance(model, hex)
h2o.gainsLift(perf)               ## extract from existing metrics object

Run the code above in your browser using DataLab