if (FALSE) {
library(h2o)
h2o.init()
# Create some random data
my_frame <- h2o.createFrame(rows = 20, cols = 5,
seed = -12301283, randomize = TRUE, value = 0,
categorical_fraction = 0.8, factors = 10, real_range = 1,
integer_fraction = 0.2, integer_range = 10,
binary_fraction = 0, binary_ones_fraction = 0.5,
missing_fraction = 0.2,
response_factors = 1)
# Turn integer column into a categorical
my_frame[,5] <- as.factor(my_frame[,5])
head(my_frame, 20)
# Create pairwise interactions
pairwise <- h2o.interaction(my_frame,
factors = list(c(1, 2), c("C2", "C3", "C4")),
pairwise = TRUE, max_factors = 10, min_occurrence = 1)
head(pairwise, 20)
h2o.levels(pairwise, 2)
# Create 5-th order interaction
higherorder <- h2o.interaction(my_frame, factors = c(1, 2, 3, 4, 5),
pairwise = FALSE, max_factors = 10000, min_occurrence = 1)
head(higherorder, 20)
# Limit the number of factors of the "categoricalized" integer column
# to at most 3 factors, and only if they occur at least twice
head(my_frame[,5], 20)
trim_integer_levels <- h2o.interaction(my_frame, factors = "C5", pairwise = FALSE, max_factors = 3,
min_occurrence = 2)
head(trim_integer_levels, 20)
# Put all together
my_frame <- h2o.cbind(my_frame, pairwise, higherorder, trim_integer_levels)
my_frame
head(my_frame, 20)
summary(my_frame)
}
Run the code above in your browser using DataLab