if (FALSE) {
# Import default Iris dataset as H2O frame
data <- as.h2o(iris)
# Train a very simple GBM model
features <- c("Sepal.Length", "Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")
original_model <- h2o.gbm(x = features, y = "Species", training_frame = data)
# Download the trained GBM model as MOJO (temporary directory used in this example)
mojo_original_name <- h2o.download_mojo(model = original_model, path = tempdir())
mojo_original_path <- paste0(tempdir(), "/", mojo_original_name)
# Upload the MOJO from local filesystem and obtain a Generic model
mojo_model <- h2o.upload_mojo(mojo_original_path)
# Perform scoring with the generic model
predictions <- h2o.predict(mojo_model, data)
}
Run the code above in your browser using DataLab