if (FALSE) {
library(h2o)
h2o.init()
# Import the wine dataset into H2O:
f <- "https://h2o-public-test-data.s3.amazonaws.com/smalldata/wine/winequality-redwhite-no-BOM.csv"
df <- h2o.importFile(f)
# Set the response
response <- "quality"
# Split the dataset into a train and test set:
splits <- h2o.splitFrame(df, ratios = 0.8, seed = 1)
train <- splits[[1]]
test <- splits[[2]]
# Build and train the model:
gbm <- h2o.gbm(y = response,
training_frame = train)
# Create the partial dependence plot
pdp <- h2o.pd_plot(gbm, test, column = "alcohol")
print(pdp)
}
Run the code above in your browser using DataLab