
Retrieves the thresholds and metric scores table from a H2OBinomialUpliftMetrics or a H2OBinomialMetrics.
h2o.thresholds_and_metric_scores(
object,
train = FALSE,
valid = FALSE,
xval = FALSE
)
A H2OBinomialUpliftMetrics or a H2OBinomialMetrics
Retrieve the training thresholds and metric scores table
Retrieve the validation thresholds and metric scores table
Retrieve the cross-validation thresholds and metric scores table (only for H2OBinomialMetrics)
The table contains indices, thresholds, all cumulative uplift values and cumulative number of observations for uplift binomial models or thresholds and maximal metric values for binomial models. If "train" and "valid" parameters are FALSE (default), then the training table is returned. If more than one parameter is set to TRUE, then a named vector of tables is returned, where the names are "train", "valid".
if (FALSE) {
library(h2o)
h2o.init()
f <- "https://s3.amazonaws.com/h2o-public-test-data/smalldata/uplift/criteo_uplift_13k.csv"
train <- h2o.importFile(f)
train$treatment <- as.factor(train$treatment)
train$conversion <- as.factor(train$conversion)
model <- h2o.upliftRandomForest(training_frame=train, x=sprintf("f%s",seq(0:10)), y="conversion",
ntrees=10, max_depth=5, treatment_column="treatment",
auuc_type="AUTO")
perf <- h2o.performance(model, train=TRUE)
h2o.thresholds_and_metric_scores(perf)
}
Run the code above in your browser using DataLab