Learn R Programming

h2o (version 3.8.1.3)

h2o.gainsLift: Access H2O Gains/Lift Tables

Description

Retrieve either a single or many Gains/Lift tables from H2O objects.

Usage

h2o.gainsLift(object, ...)

## S3 method for class 'H2OModel': h2o.gainsLift(object, newdata, valid = FALSE, xval = FALSE, ...)

## S3 method for class 'H2OModelMetrics': h2o.gainsLift(object)

Arguments

object
Either an H2OModel object or an H2OModelMetrics object.
newdata
An H2OFrame object that can be scored on. Requires a valid response column.
valid
Retrieve the validation metric.
xval
Retrieve the cross-validation metric.
...
further arguments to be passed to/from this method.

Value

  • Calling this function on H2OModel objects returns a Gains/Lift table corresponding to the predict function.

Details

The H2OModelMetrics version of this function will only take H2OBinomialMetrics objects.

See Also

predict for generating prediction frames, h2o.performance for creating H2OModelMetrics.

Examples

Run this code
library(h2o)
h2o.init()
prosPath <- system.file("extdata", "prostate.csv", package="h2o")
hex <- h2o.uploadFile(prosPath)
hex[,2] <- as.factor(hex[,2])
model <- h2o.gbm(x = 3:9, y = 2, distribution = "bernoulli",
                 training_frame = hex, validation_frame = hex, nfolds=3)
h2o.gainsLift(model)              ## extract training metrics
h2o.gainsLift(model, valid=TRUE)  ## extract validation metrics (here: the same)
h2o.gainsLift(model, xval =TRUE)  ## extract cross-validation metrics
h2o.gainsLift(model, newdata=hex) ## score on new data (here: the same)
# Generating a ModelMetrics object
perf <- h2o.performance(model, hex)
h2o.gainsLift(perf)               ## extract from existing metrics object

Run the code above in your browser using DataLab