Learn R Programming

hapassoc (version 1.2-9)

anova.hapassoc: Return likelihood ratio test of haplotype effect

Description

This function returns the likelihood ratio test statistic comparing two nested models fit with hapassoc for cohort or cross-sectional data.

Usage

# S3 method for hapassoc
anova(object, redfit, display=TRUE, …)

Arguments

object

a list of class hapassoc output by the hapassoc function

redfit

A hapassoc object resulting from fitting a reduced model

display

An indicator to suppress output displayed on screen

additional arguments to the summary function currently unused

Value

LRTstat

The likelihood ratio statistic comparing the two models

df

Degrees of freedom of the likelihood ratio statistic

pvalue

The p-value of the test

Details

See the hapassoc vignette, of the same name as the package, for details.

References

Burkett K, McNeney B, Graham J (2004). A note on inference of trait associations with SNP haplotypes and other attributes in generalized linear models. Human Heredity, 57:200-206

Burkett K, Graham J and McNeney B (2006). hapassoc: Software for Likelihood Inference of Trait Associations with SNP Haplotypes and Other Attributes. Journal of Statistical Software, 16(2):1-19

See Also

pre.hapassoc,hapassoc, summary.hapassoc.

Examples

Run this code
# NOT RUN {
data(hypoDatGeno)
example2.pre.hapassoc<-pre.hapassoc(hypoDatGeno, numSNPs=3, allelic=FALSE)
example2.regr <- hapassoc(affected ~ attr + hAAA+ hACA + hACC + hCAA + 
pooled, example2.pre.hapassoc, family=binomial())
example2.regr2 <- hapassoc(affected ~ attr + hAAA, example2.pre.hapassoc, 
family=binomial())
anova(example2.regr,example2.regr2)

# Returns:

#	hapassoc: likelihood ratio test

#Full model: affected ~ attr + hAAA + hACA + hACC + hCAA + pooled 
#Reduced model: affected ~ attr + hAAA 

#LR statistic = 1.5433 , df = 4 , p-value =  0.8189 
# }

Run the code above in your browser using DataLab