Learn R Programming

hapassoc (version 1.2-9)

summary.hapassoc: Summarize results of the hapassoc function

Description

Summary function for reporting the results of the hapassoc function in a similar style to the lm and glm summaries.

Usage

# S3 method for hapassoc
summary(object, …)

Arguments

object

a list of class hapassoc output by the hapassoc function

additional arguments to the summary function (currently unused)

Value

call

The function call to hapassoc

subjects

The number of subjects used in the analysis

coefficients

Table of estimated coefficients, standard errors and Wald tests for each variable

frequencies

Table of estimated haplotype frequencies and standard errors

dispersion

Estimate of dispersion parameter (Moment estimator for gamma model)

Details

See the hapassoc vignette, of the same name as the package, for details.

References

Burkett K, McNeney B, Graham J (2004). A note on inference of trait associations with SNP haplotypes and other attributes in generalized linear models. Human Heredity, 57:200-206

Burkett K, Graham J and McNeney B (2006). hapassoc: Software for Likelihood Inference of Trait Associations with SNP Haplotypes and Other Attributes. Journal of Statistical Software, 16(2):1-19

See Also

pre.hapassoc,hapassoc.

Examples

Run this code
# NOT RUN {
data(hypoDat)
example.pre.hapassoc<-pre.hapassoc(hypoDat, 3)
example.regr <- hapassoc(affected ~ attr + h000+ h010 + h011 + h100 + pooled,
                     example.pre.hapassoc, family=binomial())

# Summarize the results:
summary(example.regr)

# Results:
#$coefficients
#               Estimate Std. Error      zscore   Pr(>|z|)
#(Intercept) -1.24114270  0.7820977 -1.58694079 0.11252606
#attr         0.74036920  0.2918205  2.53707057 0.01117844
#h000         1.14968352  0.5942542  1.93466627 0.05303126
#h010        -0.59318434  0.6569672 -0.90291311 0.36657201
#h011        -0.03615243  0.9161959 -0.03945928 0.96852422
#h100        -0.85329292  1.0203105 -0.83630709 0.40298217
#pooled       0.38516864  0.8784283  0.43847478 0.66104215
#
#$frequencies
#         Estimate Std. Error
#f.h000 0.26716394 0.03933158
#f.h001 0.25191674 0.03866739
#f.h010 0.21997138 0.03881578
#f.h011 0.10094795 0.02949617
#f.h100 0.09507014 0.02371878
#f.h101 0.02584918 0.01411881
#f.h110 0.01779455 0.01386080
#f.h111 0.02128613 0.01247265
#
#$dispersion
#[1] 1
# }

Run the code above in your browser using DataLab