
This pages holds the details for the recipe preprocessing blueprint. This
is the blueprint used by default from mold()
if x
is a recipe.
default_recipe_blueprint(
intercept = FALSE,
allow_novel_levels = FALSE,
fresh = TRUE,
strings_as_factors = TRUE,
composition = "tibble"
)# S3 method for recipe
mold(x, data, ..., blueprint = NULL)
For default_recipe_blueprint()
, a recipe blueprint.
A logical. Should an intercept be included in the
processed data? This information is used by the process
function
in the mold
and forge
function list.
A logical. Should novel factor levels be allowed at
prediction time? This information is used by the clean
function in the
forge
function list, and is passed on to scream()
.
Should already trained operations be re-trained when prep()
is
called?
Should character columns be converted to factors
when prep()
is called?
Either "tibble", "matrix", or "dgCMatrix" for the format of the processed predictors. If "matrix" or "dgCMatrix" are chosen, all of the predictors must be numeric after the preprocessing method has been applied; otherwise an error is thrown.
An unprepped recipe created from recipes::recipe()
.
A data frame or matrix containing the outcomes and predictors.
Not used.
A preprocessing blueprint
. If left as NULL
, then a
default_recipe_blueprint()
is used.
When mold()
is used with the default recipe blueprint:
It calls recipes::prep()
to prep the recipe.
It calls recipes::juice()
to extract the outcomes and predictors. These
are returned as tibbles.
If intercept = TRUE
, adds an intercept column to the predictors.
When forge()
is used with the default recipe blueprint:
It calls shrink()
to trim new_data
to only the required columns and
coerce new_data
to a tibble.
It calls scream()
to perform validation on the structure of the columns
of new_data
.
It calls recipes::bake()
on the new_data
using the prepped recipe
used during training.
It adds an intercept column onto new_data
if intercept = TRUE
.
library(recipes)
# ---------------------------------------------------------------------------
# Setup
train <- iris[1:100, ]
test <- iris[101:150, ]
# ---------------------------------------------------------------------------
# Recipes example
# Create a recipe that logs a predictor
rec <- recipe(Species ~ Sepal.Length + Sepal.Width, train) %>%
step_log(Sepal.Length)
processed <- mold(rec, train)
# Sepal.Length has been logged
processed$predictors
processed$outcomes
# The underlying blueprint is a prepped recipe
processed$blueprint$recipe
# Call forge() with the blueprint and the test data
# to have it preprocess the test data in the same way
forge(test, processed$blueprint)
# Use `outcomes = TRUE` to also extract the preprocessed outcome!
# This logged the Sepal.Length column of `new_data`
forge(test, processed$blueprint, outcomes = TRUE)
# ---------------------------------------------------------------------------
# With an intercept
# You can add an intercept with `intercept = TRUE`
processed <- mold(rec, train, blueprint = default_recipe_blueprint(intercept = TRUE))
processed$predictors
# But you also could have used a recipe step
rec2 <- step_intercept(rec)
mold(rec2, iris)$predictors
# ---------------------------------------------------------------------------
# Matrix output for predictors
# You can change the `composition` of the predictor data set
bp <- default_recipe_blueprint(composition = "dgCMatrix")
processed <- mold(rec, train, blueprint = bp)
class(processed$predictors)
# ---------------------------------------------------------------------------
# Non standard roles
# If you have custom recipes roles, they are assumed to be required at
# `bake()` time when passing in `new_data`. This is an assumption that both
# recipes and hardhat makes, meaning that those roles are required at
# `forge()` time as well.
rec_roles <- recipe(train) %>%
update_role(Sepal.Width, new_role = "predictor") %>%
update_role(Species, new_role = "outcome") %>%
update_role(Sepal.Length, new_role = "id") %>%
update_role(Petal.Length, new_role = "important")
processed_roles <- mold(rec_roles, train)
# The custom roles will be in the `mold()` result in case you need
# them for modeling.
processed_roles$extras
# And they are in the `forge()` result
forge(test, processed_roles$blueprint)$extras
# If you remove a column with a custom role from the test data, then you
# won't be able to `forge()` even though this recipe technically didn't
# use that column in any steps
test2 <- test
test2$Petal.Length <- NULL
try(forge(test2, processed_roles$blueprint))
# Most of the time, if you find yourself in the above scenario, then we
# suggest that you remove `Petal.Length` from the data that is supplied to
# the recipe. If that isn't an option, you can declare that that column
# isn't required at `bake()` time by using `update_role_requirements()`
rec_roles <- update_role_requirements(rec_roles, "important", bake = FALSE)
processed_roles <- mold(rec_roles, train)
forge(test2, processed_roles$blueprint)
Run the code above in your browser using DataLab