Learn R Programming

harmony (version 1.0)

RunHarmony: Harmony single cell integration

Description

Run Harmony algorithm with Seurat and SingleCellAnalysis pipelines.

Usage

RunHarmony(object, group.by.vars, ...)

# S3 method for seurat RunHarmony(object, group.by.vars, dims.use = NULL, theta = NULL, lambda = NULL, sigma = 0.1, nclust = NULL, tau = 0, block.size = 0.05, max.iter.harmony = 10, max.iter.cluster = 20, epsilon.cluster = 1e-05, epsilon.harmony = 1e-04, plot_convergence = FALSE, verbose = TRUE, reference_values = NULL, reduction.save = "harmony", ...)

# S3 method for Seurat RunHarmony(object, group.by.vars, dims.use = NULL, theta = NULL, lambda = NULL, sigma = 0.1, nclust = NULL, tau = 0, block.size = 0.05, max.iter.harmony = 10, max.iter.cluster = 20, epsilon.cluster = 1e-05, epsilon.harmony = 1e-04, plot_convergence = FALSE, verbose = TRUE, reference_values = NULL, reduction.save = "harmony", assay.use = "RNA", ...)

# S3 method for SingleCellExperiment RunHarmony(object, group.by.vars, dims.use = NULL, theta = NULL, lambda = NULL, sigma = 0.1, nclust = NULL, tau = 0, block.size = 0.05, max.iter.harmony = 10, max.iter.cluster = 20, epsilon.cluster = 1e-05, epsilon.harmony = 1e-04, plot_convergence = FALSE, verbose = TRUE, reference_values = NULL, reduction.save = "HARMONY", ...)

Arguments

object

Pipeline object. Must have PCA computed.

group.by.vars

Which variable(s) to remove (character vector).

...

other parameters

dims.use

Which PCA dimensions to use for Harmony. By default, use all

theta

Diversity clustering penalty parameter. Specify for each variable in group.by.vars. Default theta=2. theta=0 does not encourage any diversity. Larger values of theta result in more diverse clusters.

lambda

Ridge regression penalty parameter. Specify for each variable in group.by.vars. Default lambda=1. Lambda must be strictly positive. Smaller values result in more aggressive correction.

sigma

Width of soft kmeans clusters. Default sigma=0.1. Sigma scales the distance from a cell to cluster centroids. Larger values of sigma result in cells assigned to more clusters. Smaller values of sigma make soft kmeans cluster approach hard clustering.

nclust

Number of clusters in model. nclust=1 equivalent to simple linear regression.

tau

Protection against overclustering small datasets with large ones. tau is the expected number of cells per cluster.

block.size

What proportion of cells to update during clustering. Between 0 to 1, default 0.05. Larger values may be faster but less accurate

max.iter.harmony

Maximum number of rounds to run Harmony. One round of Harmony involves one clustering and one correction step.

max.iter.cluster

Maximum number of rounds to run clustering at each round of Harmony.

epsilon.cluster

Convergence tolerance for clustering round of Harmony Set to -Inf to never stop early.

epsilon.harmony

Convergence tolerance for Harmony. Set to -Inf to never stop early.

plot_convergence

Whether to print the convergence plot of the clustering objective function. TRUE to plot, FALSE to suppress. This can be useful for debugging.

verbose

Whether to print progress messages. TRUE to print, FALSE to suppress.

reference_values

(Advanced Usage) Defines reference dataset(s). Cells that have batch variables values matching reference_values will not be moved

reduction.save

Keyword to save Harmony reduction. Useful if you want to try Harmony with multiple parameters and save them as e.g. 'harmony_theta0', 'harmony_theta1', 'harmony_theta2'

assay.use

(Seurat V3 only) Which assay to Harmonize with (RNA by default).

Value

Seurat (version 2) object. Harmony dimensions placed into dimensional reduction object harmony. For downstream Seurat analyses, use reduction.use='harmony' and reduction.type='harmony'.

Seurat (version 3) object. Harmony dimensions placed into dimensional reduction object harmony. For downstream Seurat analyses, use reduction='harmony'.

SingleCellExperiment object. After running RunHarmony, the corrected cell embeddings can be accessed with reducedDim(object, "Harmony").

Examples

Run this code
# NOT RUN {
## Seurat Version 2
if (requireNamespace("Seurat", quietly = TRUE)) {
    pkg_version <- packageVersion('Seurat')
    if (pkg_version >= "2.0" & pkg_version < "3.0") {
        data(cell_lines_small_seurat_v2)
        seuratObject <- RunHarmony(cell_lines_small_seurat_v2, 'dataset', 
                                   lambda = .1, verbose = FALSE)

        ## Harmony cell embeddings
        harmony_embedding <- Seurat::GetCellEmbeddings(
            seuratObject, 'harmony'
        )
        harmony_embedding[seq_len(5), seq_len(5)] 

        ## Harmony gene loadings
        harmony_loadings <- Seurat::GetGeneLoadings(
            seuratObject, 'harmony'
        )
        harmony_loadings[seq_len(5), seq_len(5)] 

        p1 <- Seurat::DimPlot(seuratObject, reduction.use = 'harmony', 
                      group.by = 'dataset', do.return = TRUE)
        p2 <- Seurat::VlnPlot(seuratObject, features.plot = 'Harmony1', 
                      group.by = 'dataset', do.return = TRUE)
        cowplot::plot_grid(p1,p2)
    }
}

## Seurat Version 3
if (requireNamespace("Seurat", quietly = TRUE)) {
    pkg_version <- packageVersion('Seurat')
    if (pkg_version >= "3.0" & pkg_version < "4.0") {
        data(cell_lines_small_seurat_v3)
        seuratObject <- RunHarmony(cell_lines_small_seurat_v3, 'dataset', 
                                   lambda = .1, verbose = FALSE)
        ## Harmony cell embeddings
        harmony_embedding <- Seurat::Embeddings(seuratObject, 'harmony')
        harmony_embedding[seq_len(5), seq_len(5)] 
        ## Harmony gene loadings
        harmony_loadings <- Seurat::Loadings(seuratObject, 'harmony')
        harmony_loadings[seq_len(5), seq_len(5)] 

        p1 <- Seurat::DimPlot(seuratObject, reduction = 'harmony', 
                              group.by = 'dataset', do.return = TRUE)
        p2 <- Seurat::VlnPlot(seuratObject, features = 'harmony_1', 
                              group.by = 'dataset', do.return = TRUE)
        cowplot::plot_grid(p1, p2)
    }
}

## SingleCellExperiment 
if (requireNamespace("SingleCellExperiment", quietly = TRUE)) {

    data(cell_lines_small_sce)
    sceObject <- RunHarmony(cell_lines_small_sce, 'dataset',
                            lambda = .1, verbose = FALSE)

    ## Harmony cell embeddings
    harmony_embedding <- SingleCellExperiment::reducedDim(
        sceObject, 'HARMONY'
    )
    harmony_embedding[seq_len(5), seq_len(5)]

    ## Plot the Harmonized embeddings
    ## Colored by batch and cell type
    SingleCellExperiment::reducedDim(sceObject, 'HARMONY') %>% 
        cbind(SingleCellExperiment::colData(sceObject)) %>% 
        data.frame() %>% 
    tidyr::gather(key, val, dataset, cell_type) %>%
    dplyr::mutate(key = dplyr::case_when(
        key == 'dataset' ~ 'Dataset batch', 
        key == 'cell_type' ~ 'Known cell types'
    )) %>% 
    dplyr::sample_frac(1L, FALSE) %>% 
    ggplot2::ggplot(ggplot2::aes(x = harmony_1, 
                                 y = harmony_2, 
                                 color = val)) + 
        ggplot2::geom_point() + 
        ggplot2::facet_wrap(~key) + 
        ggplot2::theme_test(base_size = 12) + 
        ggplot2::labs(title = 'Cell embeddings after Harmony')
}

# }

Run the code above in your browser using DataLab