# NOT RUN {
library("survival")
library("rms")
# Load imputed SMART data
data("smart")
x = as.matrix(smart[, -c(1, 2)])
time = smart$TEVENT
event = smart$EVENT
y = Surv(time, event)
# To enable parallel parameter tuning, first run:
# library("doParallel")
# registerDoParallel(detectCores())
# then set hdcox.enet(..., parallel = TRUE).
# Fit Cox model with elastic-net penalty
fit = hdcox.enet(x, y, nfolds = 3, alphas = c(0.3, 0.7),
rule = "lambda.1se", seed = 11)
# Prepare data for hdnom.nomogram
x.df = as.data.frame(x)
dd = datadist(x.df)
options(datadist = "dd")
# Generate hdnom.nomogram objects and plot nomogram
nom = hdnom.nomogram(
fit$enet_model, model.type = "enet",
x, time, event, x.df, pred.at = 365 * 2,
funlabel = "2-Year Overall Survival Probability")
plot(nom)
# }
Run the code above in your browser using DataLab