powered by
This is a wrapper around the h2o::h2o.kmeans() function that will return a list object with a lot of useful and easy to use tidy style information.
h2o::h2o.kmeans()
hai_kmeans_automl( .data, .split_ratio = 0.8, .seed = 1234, .centers = 10, .standardize = TRUE, .print_model_summary = TRUE, .predictors, .categorical_encoding = "auto", .initialization_mode = "Furthest", .max_iterations = 100 )
A list object
The data that is to be passed for clustering.
The ratio for training and testing splits.
The default is 1234, but can be set to any integer.
The default is 1. Specify the number of clusters (groups of data) in a data set.
The default is set to TRUE. When TRUE all numeric columns will be set to zero mean and unit variance.
This is a boolean and controls if the model summary is printed to the console. The default is TRUE.
This must be in the form of c("column_1", "column_2", ... "column_n")
Can be one of the following:
"auto"
"enum"
"one_hot_explicit"
"binary"
"eigen"
"label_encoder"
"sort_by_response"
"enum_limited"
This can be one of the following:
"Random"
"Furthest (default)
"PlusPlus"
The default is 100. This specifies the number of training iterations
Steven P. Sanderson II, MPH
Other Kmeans: hai_kmeans_automl_predict(), hai_kmeans_mapped_tbl(), hai_kmeans_obj(), hai_kmeans_scree_data_tbl(), hai_kmeans_scree_plt(), hai_kmeans_tidy_tbl(), hai_kmeans_user_item_tbl()
hai_kmeans_automl_predict()
hai_kmeans_mapped_tbl()
hai_kmeans_obj()
hai_kmeans_scree_data_tbl()
hai_kmeans_scree_plt()
hai_kmeans_tidy_tbl()
hai_kmeans_user_item_tbl()
if (FALSE) { h2o.init() output <- hai_kmeans_automl( .data = iris, .predictors = c("Sepal.Width", "Sepal.Length", "Petal.Width", "Petal.Length"), .standardize = FALSE ) h2o.shutdown() }
Run the code above in your browser using DataLab