distributions: Probability Density Functions for Probabilistic
Uncertainty Analysis
Description
Define a distribution for PSA parameters.
Usage
normal(mean, sd)
lognormal(mean, sd, meanlog, sdlog)
gamma(mean, sd)
binomial(prob, size)
multinomial(...)
logitnormal(mu, sigma)
beta(shape1, shape2)
triangle(lower, upper, peak = (lower + upper)/2)
poisson(mean)
define_distribution(x)
beta(shape1, shape2)
triangle(lower, upper, peak = (lower + upper)/2)
use_distribution(distribution, smooth = TRUE)
Arguments
mean
Distribution mean.
sd
Distribution standard deviation.
meanlog
Mean on the log scale.
sdlog
SD on the log scale.
prob
Proportion.
size
Size of sample used to estimate
proportion.
...
Dirichlet distribution parameters.
mu
Mean on the logit scale.
sigma
SD on the logit scale.
shape1
for beta distribution
shape2
for beta distribution
lower
lower bound of triangular
distribution.
upper
upper bound of triangular
distribution.
peak
peak of triangular distribution.
x
A distribution function, see details.
distribution
A numeric vector of
observations defining a distribution, usually
the output from an MCMC fit.
smooth
Use gaussian kernel smoothing?
Details
These functions are not exported, but only used
in define_psa(). To specify a user-made
function use define_distribution().
use_distribution() uses gaussian kernel
smoothing with a bandwidth parameter calculated
by stats::density(). Values for unobserved
quantiles are calculated by linear
interpolation.
define_distribution() takes as argument a
function with a single argument, x,
corresponding to a vector of quantiles. It
returns the distribution values for the given
quantiles. See examples.